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Chow rings of stacks of prestable curves II
By Younghan Bae at Zürich and Johannes Schmitt at Zürich

Abstract. We continue the study of the Chow ring of the moduli stack Mg;n of pre-
stable curves begun in [Y. Bae and J. Schmitt, Chow rings of stacks of prestable curves I,
Forum Math. Sigma 10 (2022), Paper No. e28]. In genus 0, we show that the Chow ring of
M0;n coincides with the tautological ring and give a complete description in terms of (addi-
tive) generators and relations. This generalizes earlier results by Keel and by Kontsevich and
Manin for the spaces of stable curves. Our argument uses the boundary stratification of the
moduli stack together with the study of the first higher Chow groups of the strata, in particular
providing a new proof of the results of Kontsevich and Manin.
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1. Introduction

The tautological ring of the moduli stack of prestable curves. Let Mg;n be the
moduli stack of prestable curves of genus g with n markings. It is a natural extension of the
Deligne–Mumford space Mg;n of stable curves. In the paper [5], we studied the rational Chow
ring CH�.Mg;n/, for .g; n/ different from .1; 0/, and its subring

R�.Mg;n/ � CH�.Mg;n/

of tautological classes, naturally extending the corresponding notion on Mg;n.
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To describe the elements of R�.Mg;n/, let

� W Cg;n !Mg;n

be the universal curve and let !� be the relative dualizing sheaf. Let

�i WMg;n ! Cg;n

be the i -th universal section and let Si � Cg;n be the corresponding divisor. We define  and
�-classes: given 1 � i � n we set

(1.1)  i D c1.�
�
i !�/ 2 CH1.Mg;n/;

and for given m � 0 we set

(1.2) �m D ��

 
c1

 
!�

 
nX
iD1

Si

!!mC1!
2 CHm.Mg;n/:

Let � be a prestable1) graph in genus g with n markings. Each prestable graph defines a gluing
map

�� WM� D

Y
v2V.�/

Mg.v/;n.v/ !Mg;n

(see e.g. [5, Section 2.1]). Given any prestable graph � , consider the products

(1.3) ˛ D
Y
v2V

 Y
i2H.v/

 
ai

v;i

mvY
aD1

�
bv;a
v;a

!
2 CH�.M�/:

of  and �-classes on the space M� above. Then we define the decorated stratum class Œ�; ˛�
as the pushforward

Œ�; ˛� D .��/�˛ 2 R�.Mg;n/:

Definition 1.1. The tautological ring R�.Mg;n/ is the Q-subspace of CH�.Mg;n/ addi-
tively generated by decorated strata classes.2)

The paper [5] then develops a calculus of decorated stratum classes. Below, such results
from [5] are frequently referred.

In full generality, a description of the tautological ring R�.Mg;n/ is hard to approach. In
this paper we specialize our attention to the moduli space of genus zero prestable curves.

The tautological ring in genus zero. In Section 2, we give a complete description of
the Chow groups of M0;n in terms of explicit generators and relations.

For the moduli spaces M0;n of stable curves, Keel [22] proved that the tautological ring
of M0;n coincides with the Chow ring. Moreover, he showed that this ring is generated as an

1) A prestable graph is given by the same data as a stable graph, except that one removes the condition that
every vertex v should be stable, i.e. satisfy 2g.v/ � 2C n.v/ > 0.

2) In [5, Definition 1.3] the tautological ring of Mg;n is defined in a much more conceptual way, but we
show that it is equivalent to the above presentation ([5, Theorem 1.4]).
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algebra by the boundary divisors of M0;n and that the ideal of relations is generated by the
WDVV relations, the pullbacks of the relations

(1.4)
1

2

3

4

D

1

3

2

4

D

1

4

2

3

in CH1.M0;4/ under the forgetful maps M0;n!M0;4, together with the relationsD1 �D2D 0
for D1;D2 disjoint boundary divisors.

Later, Kontsevich and Manin [26,27] showed that the Chow groups of M0;n are generated
as a Q-vector space by the classes of the closures of boundary strata of M0;n. Moreover, the
set of linear relations between such strata classes are generated by the pushforwards of WDVV
relations under boundary gluing maps. Our treatment of the Chow groups of M0;n will be
closer in spirit to the one by Kontsevich and Manin, since we provide additive generators and
relations.

Generators. A first new phenomenon we see for M0;n is that its Chow group is no
longer generated by boundary strata. This comes from the fact that for n D 0; 1; 2, the loci
Msm
0;n �M0;n of smooth curves already have nontrivial Chow groups. They are given by

polynomial algebras

CH�.Msm
0;0/ D QŒ�2�;

CH�.Msm
0;1/ D QŒ 1�;

CH�.Msm
0;2/ D QŒ 1�

(1.5)

generated by the class �2 on M0;0 and the classes  1 on M0;1 and M0;2.3) So we see that
the Chow group can no longer be generated by boundary strata because all strata contained in
the boundary restrict to zero on the locus Msm

0;n of smooth curves. For n � 3, the complement
M0;n nMsm

0;n contains strata of the form Msm
0;1 �Msm

0;n. Then one can combine the excision
sequence for Msm

0;n �M0;n, and the description of the Chow group of Msm
0;1 to show that

CH�.M0;n/ is not generated as a vector space by the boundary strata.4)

Instead, we prove that CH�.M0;n/ is generated by strata of M0;n decorated by �- and
 -classes. More precisely, the generators are indexed by the data Œ�; ˛�, where � is a prestable
graph (describing the shape of the generic curve inside the boundary stratum) and ˛ is a product
of  -classes at vertices of � with 1 or 2 outgoing half-edges (or � is the trivial graph for M0;0

and ˛ D �a2 ). We call such a class Œ�; ˛� a decorated stratum class in normal form. The allowed
decorations ˛ precisely reflect the nontrivial Chow groups (1.5) above. We illustrate some of
the generators that appear in Figure 1, for the precise construction of the corresponding classes
Œ�; ˛� 2 CH�.M0;n/ see [5, Definition 3.3].

In particular, since all such classes are contained in the tautological ring, we generalize
Keel’s result that all Chow classes on M0;n are tautological.

Theorem 1.2. For n � 0 we have the equality CH�.M0;n/ D R�.M0;n/.

3) These �- and  -classes are defined similarly to the corresponding classes on the moduli space of stable
curves, see [5, Definition 3.2].

4) In particular, this statement follows from our full description of the tautological relations in M0;n given
in Theorem 1.4.



58 Bae and Schmitt, Chow rings of stacks of prestable curves II

 3   4 �52  2

 5

Figure 1. Some decorated strata classes Œ�; ˛� in normal form, giving generators of CH10.M0;0/

The idea of proof for this first theorem is easy to describe: consider the excision sequence
of Chow groups for the open substack Msm

0;n �M0;n with complement 𝜕M0;n:

(1.6) CH��1.𝜕M0;n/! CH�.M0;n/! CH�.Msm
0;n/! 0:

From (1.5) for n D 0; 1; 2 and the classical statement

(1.7) CH�.Msm
0;n/ D CH�.M0;n/ D Q � ŒM0;n� for n � 3

we see that all classes in CH�.Msm
0;n/ have tautological representatives. It follows that it suffices

to prove that all classes supported on 𝜕M0;n are tautological. But 𝜕M0;n is parameterized (via
the union of finitely many gluing morphisms) by products of spaces M0;ni

. This allows us to
set up a recursive proof.

One thing to verify in this last part of the argument is that the Chow group of a product of
spaces M0;ni

is generated by cycles coming from the factors M0;ni
. In fact, we can show more,

namely that the stacks of prestable curves in genus 0 satisfy a certain Chow–Künneth property.
To formulate it, we need to introduce two technical properties of locally finite-type stacks Y :
we say that Y has a good filtration by finite-type stacks if Y is the union of an increasing
sequence .Uj /j of finite-type open substacks such that the codimension of the complement
of Uj becomes arbitrarily large as j increases. We say that Y has a stratification by quotient
stacks if there exists a stratification of Y by locally closed substacks which are each isomorphic
to a global quotient of an algebraic space by a linear algebraic group. All stacks Mg;n for
.g; n/ ¤ .1; 0/ satisfy both of these properties.

Proposition 1.3 (Proposition 2.6, Corollary 2.22). Consider the stack M0;n (for n � 0)
and let Y be a locally finite-type stack. Then the map5)

CH�.M0;n/˝Q CH�.Y /! CH�.M0;n � Y /; ˛ ˝ ˇ 7! ˛ � ˇ

is surjective if Y has a good filtration by finite-type stacks and a stratification by quotient
stacks. The map is an isomorphism if Y is a quotient stack.

In the proposition above, the technical conditions (like Y being a quotient stack or having
a stratification by quotient stacks) are currently needed since some of the results we cite in our
proof have them as assumptions. We expect that these conditions can be relaxed, but do not
pursue this since Proposition 1.3 is sufficient for the purpose of our paper.

5) Below, the notation ˛ � ˇ denotes the exterior product of cycles constructed in [28, Proposition 3.2.1].
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Relations. Returning to the stacks M0;n themselves, we also give a full description of
the set of linear relations between the generators Œ�; ˛� above. An important example is the
degree one relation

(1.8)  1 C  2 D
1 2

2 CH1.M0;2/

on M0;2. What we can show is that all tautological relations in genus 0 are implied by relation
(1.8) together with the natural extension of relation (1.4) to CH1.M0;4/.

Theorem 1.4 (informal version, see Theorems 2.31 and 2.33). For n � 0, the system of
all linear relations in CH�.M0;n/ between the decorated strata classes Œ�; ˛� in normal form
is generated by the WDVV relation (1.4) on M0;4 and relation (1.8) on M0;2.

We give a precise description of what we mean by the system of relations “generated” by
(1.4) and (1.8) in Definition 2.27, but roughly the allowed operations are as follows:

� For n � 4we can pull back the WDVV relation (1.4) under the morphism M0;n !M0;4

forgetting n � 4 of the marked points.
� We can multiply relation (1.8) by an arbitrary polynomial in  1;  2.
� Given a decorated stratum Œ�0; ˛0� in normal form, a vertex v 2 V.�0/ at which ˛0 is the

trivial decoration and a known relation R0 in the Chow group CH�.M0;n.v// associated
to the vertex v, we can create a new relation by gluing R0 into the vertex v of Œ�; ˛�.
In other words, for �v WM� !M0;n.v/ the projection on the factor associated to v, the
new relation is given by

Œ�; ˛� D .��0
/�.˛0 � �

�
vR0/ D 0 2 CH�.M0;n/:

See Example 2.28 for an illustration.

Again, our proof strategy for Theorem 1.4 begins by looking at the excision sequence (1.6),
but now extended on the left using the first higher Chow group of Msm

0;n, again defined by the
work of [28]

(1.9) CH�.Msm
0;n; 1/

𝜕
�! CH��1.𝜕M0;n/! CH�.M0;n/! CH�.Msm

0;n/! 0:

To illustrate how we can compute tautological relations using this sequence, consider the set of
prestable graphs �i with exactly one edge. The associated decorated strata classes Œ�i �D Œ�i ; 1�
are supported on 𝜕M0;n and in fact form a basis of CH0.𝜕M0;n/. Then from (1.9) we see that
the linear relations between the classes Œ�i � 2 CH1.M0;n/ are exactly determined by the image
of 𝜕.

For this purpose, we compute the first higher Chow groups of the space Msm
0;0 and finite

products of spaces Msm
0;ni

(ni � 1), which parametrize strata in the boundary of M0;n. The
corresponding results are given in Propositions 2.14 and 2.16. The proof of Theorem 1.4
then proceeds by an inductive argument using, again, the stratification of M0;n according to
dual graphs.

Restricting our argument to the moduli spaces M0;n of stable curves, our approach to tau-
tological relations via higher Chow groups gives a new proof that the relations between classes
of strata are additively generated by boundary pushforwards of WDVV relations. As mentioned
before, this result was originally stated by Kontsevich and Manin in [26, Theorem 7.3] together
with a sketch of proof which was expanded in [27].
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The proof relied on Keel’s result [22] that the WDVV relations generate the ideal of
relations multiplicatively and thus required an explicit combinatorial analysis of the product
structure of CH�.M0;n/. In turn, the original proof by Keel proceeded by constructing M0;n

as an iterated blowup of .P1/n�3, carefully keeping track how the Chow group changes in
each step.

In comparison, our proof is more conceptual, since we can trace each WDVV-relation on
M0;n to a generator of a higher Chow group CH�.M� ; 1/ of some stratum M� �M0;n of the
moduli space. A very similar approach appears in [40], where Petersen used the mixed Hodge
structure of M0;n and the spectral sequence associated to stratification of M0;n to reproduce
[22, 26, 27].

A nontrivial consequence of our proof is the following result, stating that in codimension
at least two the Chow groups of M0;n agree with the Chow groups of its boundary 𝜕M0;n (up
to a degree shift).

Corollary 1.5 (see Corollary 2.37). Let n � 4. Then the inclusion

� W 𝜕M0;n !M0;n

of the boundary of M0;n induces an isomorphism

�� W CH`.𝜕M0;n/! CH`C1.M0;n/

for ` > 0.

This result follows easily using higher Chow groups: we have the exact sequence

CH`C1.M0;n; 1/
𝜕
�! CH`.𝜕M0;n/

��
�! CH`C1.M0;n/ �! 0:

Using that M0;n can be seen as a hyperplane complement in An�3, it is easy to show that the
group CH`C1.M0;n; 1/ vanishes for ` > 0. Thus for ` > 0 the map �� is an isomorphism by
the exact sequence. In Remark 2.38 we explain how, alternatively, the corollary follows from
the results [26, 27] of Kontsevich and Manin.

Relation to other work.

Gromov–Witten theory. Gromov–Witten theory studies intersection numbers on the
moduli spaces Mg;n.X; ˇ/ of stable maps to a nonsingular projective variety X . Since the
spaces of stable maps admit forgetful morphisms

(1.10) Mg;n.X; ˇ/!Mg;n; .f W .C; p1; : : : ; pn/! X/ 7! .C; p1; : : : ; pn/;

results about the Chow groups of Mg;n can often be translated to results about Gromov–Witten
invariants of arbitrary target varieties X .6)

6) Note that a priori it is not possible to directly pull back classes in CH�.Mg;n/ under the map
Mg;n.X; ˇ/!Mg;n, since this map is in general neither flat nor lci. However, there exists an isomorphism

CH�.Mg;n/! CH�OP.Mg;n/

from the Chow group of Mg;n to its operational Chow group, and operational Chow classes are functorial under
arbitrary morphisms. Then, any operational Chow class acts on the Chow group of Mg;n.X; ˇ/, see Section
[5, Appendix C.].
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As an example, in [17] Gathmann used the pullback formula of  -classes along the stabi-
lization morphism st WMg;1 !Mg;1 to prove certain properties of the Gromov–Witten poten-
tial. Similarly, the paper [32] proved degree one relations on the moduli space M0;n.PN ; d /
of stable maps to a projective space and used them to reduce two pointed genus 0 potentials to
one pointed genus 0 potentials. As we explain in Example 2.40, the relations used in [32] are
the pullback of the tautological relation (1.8) on M0;2 and a similar relation on M0;3 under
forgetful morphisms (1.10).

Chow rings of open substacks of M0;n. Several people have studied Chow rings with
rational coefficients of open substacks of M0;n, and we explain how their results relate to ours.

In [36], Oesinghaus computed the Chow rings of the loci Mss
0;2 and Mss

0;3 of semistable
curves in M0;2 and M0;3. His proof identified the rings in terms of the known algebra of quasi-
symmetric functions QSym (see [33] for an overview). However, for many generators of QSym
it remained unclear which (geometric) cycle classes on Mss

0;2 and Mss
0;3 they corresponded to.

In [5] we answered this question, identifying an additive basis of QSym with explicit decorated
strata classes in the tautological rings of Mss

0;2 and Mss
0;3. In Example 2.42 below we continue

this argument by showing how Theorems 1.2 and 1.4 can be used to give a new proof of Oesing-
haus’ results, showing that the decorated strata classes above are indeed linearly independent
generators of the Chow group.

On the other hand, in [13–15] Fulghesu gave a computation of the Chow ring CH�.M�30;3/
of the locus M�30;0 of curves with at most three nodes inside M0;0. Using a computer program,
we compare his results to ours and find that our results almost agree, except for the fact that
in [14] there is a missing tautological relation in the final step of the proof. This is explained in
detail in Example 2.43.

Outlook and open questions. We want to finish the introduction with a discussion of
some conjectures and questions about the Chow groups of Mg;n.

The first concerns the relation to the Chow groups of the moduli spaces Mg;n of stable
curves. Since Mg;n is an open substack of Mg;n, the Chow groups of Mg;n determine those
of Mg;n. The following conjecture would imply that the converse holds as well.

Conjecture (Conjecture 3.1). Let .g; n/ ¤ .1; 0/. Then for a fixed d � 0 there exists
m0 � 0 such that for any m � m0, the forgetful morphism7)

Fm WMg;nCm !Mg;n; .C; p1; : : : ; pn; pnC1; : : : ; pnCm/ 7! .C; p1; : : : ; pn/

satisfies that the pullback

F �m W CHd .Mg;n/! CHd .Mg;nCm/

is injective.

It is easy to see that the system of morphisms .Fm/m�0 forms an atlas of Mg;n and
that the complement of the image of Fm has arbitrarily large codimension as m increases.

7) Note that, importantly, the morphism Fm does not stabilize the curve C , it simply forgets the last m
markings and returns the corresponding prestable curve.
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Thus for a fixed degree d , the Chow groups CHd .Fm.Mg;nCm// converge to CHd .Mg;n/,
but it remains to verify that the pullback by Fm indeed becomes injective. In Section 3.1 we
provide some additional motivation and a number of cases .n; d/ in genus zero where the
conjecture holds.

Since the map F �m sends tautological classes on Mg;n to tautological classes in Mg;nCm,
the conjecture would also imply that knowing all tautological rings of moduli spaces of sta-
ble curves would uniquely determine the tautological rings of the stacks of prestable curves.
In [41], Pixton proposed a set of relations between tautological classes on the moduli spaces
of stable curves, proven to hold in cohomology [38] and in Chow [20], and he conjectured
that these are all tautological relations. Combined with the conjecture above, this would then
determine all tautological rings of the stacks Mg;n. It is an interesting question if Pixton’s set of
relations can also be generalized directly to the stacks of prestable curves to give a conjecturally
complete set of relations.

Finally, recall that Theorems 1.2 and 1.4 completely determine the Chow rings of M0;n.
Given an open substack U �M0;n which is a union of strata, it is easy to see that CH�.U / is
the quotient of CH�.M0;n/ by the span of all tautological classes supported on the complement
of U , so the Chow rings of such U are likewise determined.

For such open substacks U we can ask some more refined questions. The first concerns
the structure of CH�.U / as an algebra.

Question 1 (Question 2.44). Is it true that for U �M0;n an open substack of finite type
which is a union of strata, the Chow ring CH�.U / is a finitely generated Q-algebra?

Supporting evidence for this question is that it has an affirmative answer for all stacks
Msm
0;n by (1.5) and (1.7), and by the computations in [14] also for the substacks U DM�e0;0,

e D 0; 1; 2; 3, of unmarked rational curves with at most e nodes. Similar to the proof technique
in [14], a possible approach to Question 1 for arbitrary U is to gradually enlarge U , adding one
stratum of the moduli stack M0;n at a time and showing in each step that only finitely many
additional generators are necessary.

Note that for U not of finite type, Question 1 will have a negative answer in general:
from [36] it is easy to see that the Chow ring CH�.Mss

0;2/ of the semistable locus in M0;2 is
not finitely generated as an algebra.

Our second question concerns the Hilbert series

HU D
X
d�0

dimQ CHd .U /td

of the Chow ring of U .

Question 2 (Question 2.45). Is it true that for U �M0;n any open substack which is
a union of strata, the Hilbert series HU is the expansion of a rational function at t D 0?

First note that a positive answer to Question 1 would imply Question 2 for all finite-type
substacks U �M0;n, since the Hilbert series of a finitely generated graded algebra is a rational
function, all of whose poles are at roots of unity ([34, Theorem 13.2]). However, Question 2
also has a positive answer for the non-finite-type stacksU DMss

0;2 and Mss
0;3 studied in [36]. In

Table 1 we collect some examples of Hilbert series for different U , computed in Example 2.43
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U HU

M�00
1

1 � t2

M�10
1

.1 � t2/.1 � t /

M�20
t4 C 1

.1 � t2/2.1 � t /

M�30
t6 C t5 C 2t4 C t3 C 1

.1 � t2/2.1 � t /.1 � t3/

Mss
0;2

1

1 � 2t

Mss
0;3

.1 � t /3

.1 � 2t/3

Table 1. The Hilbert series of the Chow rings of open substacks U of M0;n.

and Section 2.6. Note how for U DMss
0;2 or Mss

0;3 the rational function HU has poles at 1
2

,
which is not a root of unity (thus giving one way to see that the Chow rings are not finitely
generated).

Structure of the paper. In Section 2 we treat the Chow groups of the stacks M0;n

of prestable curves of genus zero. We start in Section 2.1 by computing the Chow groups of
the loci Msm

0;n of smooth curves and explaining how (most) �- and  -classes on M0;n can
be expressed in terms of cycles supported on the boundary. In Section 2.2 we show that every
class in the Chow ring of M0;n is tautological. In Section 2.3 we compute the first higher Chow
groups of the strata of M0;n and use this in Section 2.4 to classify the tautological relations
on M0;n. We finish this part of the paper by discussing the relation to earlier work in Section 2.5
and including some observations and questions about Chow groups of open substacks of M0;n

in Section 2.6.
In Section 3 we compare the Chow rings of the stacks Mg;n of prestable curves and the

stacks Mg;n of stable curves. We present a conjectural relation between these in Section 3.1.
We extend the known results about divisor classes on Mg;n to Mg;n in Section 3.2 and discuss
how the study of zero cycles extends in Section 3.3.

Finally, Appendix A summarizes a construction of a Gysin pullback for higher Chow
groups following [9, 24].

Notations and conventions. We work over an arbitrary base field k. For the conve-
nience of the reader, we provide an overview of notations used in the paper in Table 2.

2. The Chow ring in genus 0

In this section we prove Theorem 1.2 and Theorem 1.4. These results completely describe
the rational Chow group of M0;n.
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Mg;n moduli space of prestable curves

Mg;n;a moduli space of prestable curves with values in a semigroup

M�

Q
v2V.�/Mg.v/;n.v/, where � is a prestable graph

M� moduli space of curves with dual graph precisely �

RWDVV set of WDVV relations

R�; set of  and � relations

Table 2. Notations

2.1.  and � classes in genus 0. In [26, 27], Kontsevich and Manin described the
Chow groups of M0;n via generators given by boundary strata and additive relations, called the
WDVV relations. Their approach relies on the fact that every class on M0;n can be represented
by boundary classes without  or � classes. This is because the locus of smooth n pointed
rational curves M0;n has a trivial Chow group for n � 3.

However the Chow group of the locus of smooth curves Msm
0;n is no longer trivial when

n D 0; 1; 2 and hence not all tautological classes on M0;n can be represented by boundary
classes. We first summarize what is known about the Chow groups of Msm

0;n. For a smooth
group scheme G over k we write BG WD ŒSpec k=G� for the classifying stack of G, whose
S -points are G-torsors over S .

Lemma 2.1. For the moduli spaces of prestable curves in genus 0 we have

(a) Msm
0;0 D BPGL2 and CH�.Msm

0;0/ D QŒ�2�,

(b) Msm
0;1 D BU for

U D

´"
a b

0 d

#
2 PGL2

µ
Š Ga ÌGm

and CH�.Msm
0;1/ D QŒ 1�,

(c) Msm
0;2 Š BGm and CH�.Msm

0;2/ D QŒ 1�,

(d) Msm
0;n DM0;n and CH�.Msm

0;n/ D Q � ŒMsm
0;n� for n � 3.

Proof. The first three statements are proved in [13]. The last statement comes from the
fact that M0;n is an open subscheme of An�3.

Note that for part (a) of the lemma above, it is important that we work with Q-coefficients.
Indeed, the Chow groups with integral coefficients of BPGL2 Š BSO.3/ have been computed
in [37] as

CH�.BPGL2/Z D ZŒc1; c2; c3�=.c1; 2c3/;

so we see that there exists a nontrivial 2-torsion element in codimension 3.
By Lemma 2.1 we know that any monomial in �- and  -classes on M0;n can be written

as a multiple of our preferred generators above (a power of �2 for n D 0 or a power of  1 for
n D 1; 2) plus a contribution from the boundary. Next we give explicit formulas how to do this.

We start with the  -classes. For n D 0 there is no marking and for n D 1 the class  1 is
our preferred generator. For n D 2 we have the following useful tautological relation.
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Lemma 2.2. There is a codimension one relation

 1 C  2 D

1 2

in CH1.M0;2/.

Proof. Consider the Gm-action on P1 given by

t:Œx0 W x1� D Œt � x0 W x1� for t 2 Gm.k/:

For the identification Msm
0;2 Š BGm D ŒSpec k=Gm�, the universal family over Msm

0;2 is given
by

ŒP1=Gm�

ŒSpec k=Gm�:

p2D1p1D0

We have that � 1;� 2 are the first Chern classes of the normal bundles of p1; p2. We have
 1 C  2 D 0 in CH1.Msm

0;2/ because the Gm-action on P1 has opposite weights at 0;1. Thus,
from the excision sequence

CH0.𝜕M0;2/! CH1.M0;2/! CH1.Msm
0;2/! 0;

it follows that  1 C  2 can be written as a linear combination of fundamental class of two
boundary strata

 1 C  2 D a

1 2

C b

1 2

:

Consider the morphism F3 WM0;5 !M0;2 forgetting the last three markings. We denote by
D.AjB/ the boundary divisor with markings splitting to the two vertices as A t B (see below
for an illustration). It follows from [5, Section 3.2] that

F �3  i D  i ;

F �3 D.¹1ºj¹2º/ D
X

I1tI2D¹3;4;5º
jI1j;jI2j�1

D.¹1º [ I1j¹2º [ I2/;

F �3 D.;j¹1; 2º/ D
X

I1tI2D¹3;4;5º
jI1j�2

D.I1j¹1; 2º [ I2/:

On M0;5 there is a unique linear relation between the pullbacks of  1 C  2, D.¹1ºj¹2º/ and
D.;j¹1; 2º/ under F3, from which the coefficients a; b can be read off as a D 1; b D 0.

For n D 2 we can express  2 as the multiple � 1 of our preferred generator plus a term
supported in the boundary.

Now let n � 3. For ¹1; : : : ; nº D I1 t I2, we denote by

D.I1 j I2/ D I1 I2
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the class of the boundary divisor in CH1.M0;n/ associated to the splitting I1 t I2 of the
marked points. The following lemma shows how to write  -classes on M0;n via boundary
strata.

Lemma 2.3. For n � 3 and 1 � i � n, we have

 i D
X

I1tI2D¹1;:::;nº
i2I1I j;`2I2

D.I1 j I2/

in CH1.M0;n/ for any choice of 1 � j; ` ¤ i � n.

Proof. When n D 3, we have CH1.Msm
0;3/ D 0, so  i can be written as a linear com-

bination of the four boundary divisors of M0;3. Again, the coefficients can be determined via
the pullback under F2 WM0;5 !M0;3. The relation for n � 4 follows by pulling back the
relation on M0;3 via the morphism F WM0;n !M0;3 forgetting all markings except ¹i; j; `º.
This pullback can be computed as

F � m D  m

and
F �D.I jJ / D

X
I 0tJ 0D¹4;:::;nº

D.I t I 0jJ t J 0/ for I t J D ¹1; 2; 3º

via [5, Corollary 3.9].

For the �-classes on M0;n we have the following boundary expressions.

Lemma 2.4. Let a be a nonnegative integer and consider �a 2 CHa.M0;n/.

(a) When n� 1, the class �a can be written as a linear combination of monomials in -class-
es and boundary classes Œ�i ; ˛i � for nontrivial prestable graphs �i .

(b) When n D 0, the class �a can be written as a linear combination of monomials in �2 and
 -classes and boundary classes Œ�i ; ˛i � for nontrivial prestable graphs �i .

In the calculation below, we use the notion of tautological classes on the moduli stack
M0;n;1 of A-valued prestable curves when A is a semigroup with two elements ¹0; 1º so that
1C 1 D 1. This stack parametrizes prestable curves

.C; p1; : : : ; pn; .av/v2V.�.C///

with additional decoration of av 2 A at each component Cv of C , with
P
v2V.�.C// av D 1.

They must satisfy the stability condition that any component Cv with fewer than three special
points must have av D 1. The reason why this stack is useful is that unlike the moduli space of
stable curves Mg;n, the space Mg;nC1 is not the universal curve of Mg;n. On the other hand,
for moduli spaces A-valued prestable curves, the map Mg;nC1;1 !Mg;n;1 which forgets the
last marked point and contracts the component Cv containing it if it becomes unstable, is the
universal curve. Since M0;n;1 contains M0;n as the locus of A-valued curves satisfying av D 1
for all v, it is useful to develop the theory of tautological classes on the space M0;n;1 and then
simply restrict to M0;n in the end. We refer to [5, Section 2.2] for details.
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Proof. It is enough to prove the corresponding statement on M0;n;1 because the restric-
tion to the open substack M0;n �M0;n;1 does not create additional � classes.

(a) Consider the universal curve

� WM0;nC1;1 !M0;n;1

so that �a D ��. aC1nC1 /. We prove the claim by induction on a, where the induction start a D 0
is trivial since �0 D n � 2. In the computation, we repeatedly use the formula for �� proven in
[5, Proposition 3.11].

If n � 2 and a � 1, we claim that  nC1 2 CH1.M0;nC1;1/ can be written as a sum of
boundary divisors. Indeed, by Lemma 2.3 this is true for  nC1 2 CH1.M0;nC1/ and so the
statement on M0;nC1;1 follows by pulling back under the forgetful map

FA WM0;nC1;1 !M0;nC1

of A-values using [5, Proposition 3.12]. Thus replacing one of the factors  nC1 in  aC1nC1

with this boundary expression, we get a sum of boundary divisors in M0;nC1;1 decorated
with  anC1. After pushing forward to M0;n;1, this class can be written as a tautological class
without � classes by the induction hypothesis.

When nD 1, we also conclude by induction on a. Pulling back the relations of Lemma 2.2
along the morphism M0;2;1 !M0;2 forgetting A-values, we have

�a D ��. 
aC1
2 / D ��

�
� a2 1 C

1  a2 �
;

where implicitly we sum over all A-valued graphs where the sum of degrees is equal to 1. By
[5, Proposition 3.10] we have

 1 D �
� 1 C

.0;1/ .0;0/

1

2
:

Using the projection formula, the expression [5, Proposition 3.11] for the pushforward �� and
the induction hypothesis we get the result.

(b) When a is an odd number, this statement follows from the Grothendieck–Riemann–
Roch computation in [12, Proposition 1]. Namely,

0 D ch2a�1.��!�/ D
B2a

.2a/Š

 
�2a�1 C

1

2

X
�

2a�2X
iD0

.�1/i ih 
2a�a�i
h0 Œ��

!
;

where the sum is over A-valued graphs � with one edge e D .h; h0/ and degree 1. Here B2a is
the 2a-th Bernoulli number.

We prove the statement for �2a by the induction on a. Consider the forgetful morphism

�2 WM0;2;1 !M0;0;1:

which is a composition of two forgetful maps M0;2;1
�1
�!M0;1;1

�0
�!M0;0;1. By the projec-

tion formula and [5, Proposition 3.10], one computes

�2�. 
3
1 

2aC1
2 / D �0��1�. 

2aC1
2 .��1 1 CD1;2/

3/

D �0��1�. 
2aC1
2 ��1 

3
1 /

D �0�. 
3
1�2a/ D �0�. 

3
1�
�
0 �2a C  

2aC3
1 / D �2aC2 C �2�2a;
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where D1;2 is the divisor class on M0;2;1 which is the image of the universal section of �1
associated to the first marking, which satisfies  2 �D1;2 D 0. On the other hand,

�2�. 
3
1 

2aC1
2 / D �2�

�
� 21 

2aC2
2 C

 21  2aC12
�

D ��2aC2 � �1�2aC1 C �2�

�  21  2aC12
�

by Lemma 2.2. By the induction hypothesis, comparing the two equalities ends the proof.

2.2. Generators of CH�.M0;n/. The goal of this subsection is to prove Theorem 1.2.
The basic idea is simple: by Lemma 2.1 we know that classes on the smooth locus of M0;n have
tautological representatives. By an excision argument, it suffices to show that classes supported
on the boundary are tautological. But the boundary is parametrized under the gluing maps by
products of M0;ni

. Then we want to conclude using an inductive argument.
The two main technical steps to complete are as follows:

� The boundary of M0;n is covered by a finite union of boundary gluing maps, which are
proper and representable. We want to show that the direct sum of pushforwards by the
gluing maps is surjective on the Chow group of the boundary.

� Knowing that classes on M0;n1
and M0;n2

are tautological up to a certain degree d , we
want to conclude that classes of degree at most d on the product M0;n1

�M0;n2
are

tensor products of tautological classes.

The first issue is resolved by the fact that the pushforward along a proper surjective morphism
of relative Deligne–Mumford type is surjective on the rational Chow group. We prove this
statement in [5, Appendix B.4].

We now turn to the second issue, understanding the Chow group of products of spaces
M0;ni

. We make the following general definition, extended from [36, Definition 6].

Definition 2.5. Let X; Y be algebraic stacks with X locally of finite type over k and Y
of finite type over k. We say that X has the Chow Künneth generation property (CKgP) for Y
if the natural morphism

(2.1) CH�.X/˝ CH�.Y /! CH�.X � Y /

is surjective, and we say that it has the Chow Künneth property (CKP) for Y if the map (2.1)
is an isomorphism. Similarly, we define that X has the CKgP (or CKP) if it has the CKgP (or
CKP) for all algebraic stacks Y of finite type over k.

Recall that a locally of finite-type stack X has a good filtration by finite-type stacks if
X is the union of an increasing sequence .Uj /j of finite-type open substacks such that the
codimension of the complement of Uj becomes arbitrarily large as j increases. It is immediate
that if X has the CKgP (or the CKP) and in addition has a good filtration, then the map (2.1) is
surjective (or an isomorphism) for all Y locally finite-type over k admitting a good filtration.
The additional assumption of the good filtration is added since in general tensor products and
right exact sequences are not compatible with inverse limits.
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We now turn to showing the following result, resolving the second issue mentioned at the
beginning of the section.

Proposition 2.6. For all n � 0, the stacks M0;n have the CKgP for finite-type stacks Y
having a stratification by quotient stacks.

For the proof we start with the smooth part of M0;n.

Proposition 2.7. For all n � 0, the stacks Msm
0;n have the CKP.

Proof. Starting with the easy cases, for n D 2 we have Msm
0;2 Š BGm by Lemma 2.1

and it was shown in [36, Lemma 2] that this satisfies the CKP. On the other hand, for n � 3 we
have Msm

0;n DM0;n, which is an open subset of An�3. Then for any finite-type stack Y we have
CH�.M0;n/˝ CH�.Y / Š CH�.Y / and the map (2.1) is just the pullback under the projection
M0;n � Y ! Y . Combining [28, Corollary 2.5.7] and the excision sequence, we see that this
pullback is surjective. On the other hand, composing it with the Gysin pullback by an inclusion

Y Š ¹C0º � Y �M0;n � Y

for some C0 2M0;n we obtain the identity on CH�.Y /, so it is also injective.
Next we consider the case n D 1. By Lemma 2.1 we have

Msm
0;1 Š BU

for U D Ga ÌGm. The group U contains Gm as a subgroup and we claim that the natural
map BGm ! BU is an affine bundle with fibre A1. Indeed, the fibres are U=Gm Š A1 and
the structure group is U D Aff.1/ acting by affine transformations on A1. Of course also for
any finite-type stack Y it is still true that Y � BGm ! Y � BU is an affine bundle. Then by
[28, Corollary 2.5.7] we have that the two vertical maps in the diagram

CH�.Y /˝ CH�.BGm/ CH�.Y � BGm/

CH�.Y /˝ CH�.BU/ CH�.Y � BU/

induced by pullback of the affine bundles are isomorphisms. The top arrow in the diagram is
also an isomorphism since, as seen above, BGm has the CKP. Thus the bottom arrow is an
isomorphism as well.

We are left with the case n D 0. The forgetful map

(2.2) � WMsm
0;1 !Msm

0;0

gives the universal curve over Msm
0;0. The map (2.2) can be thought of as the morphism between

quotient stacks
� W ŒP1=PGL2�! ŒSpec k=PGL2�

induced by the PGL2-equivariant map P1 ! Spec k. By [5, Remark B.20], the map � is pro-
jective and the line bundle OP1.2/ on P1 descends to a �-relatively ample line bundle on
ŒP1=PGL2�.
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Now for any finite-type stack Y consider a commutative diagram

CH�.Y /˝ CH�.BPGL2/ CH�.Y � BPGL2/

CH�.Y /˝ CH�.BU/ CH�.Y � BU/Š

id˝�� .id��/�

induced by the projective pushforward ��. Note that the map .id � �/� is surjective. Indeed,
a small computation8) shows that for ˛ 2 CH�.Y � BPGL2/ we have

.id � �/�

�
1

2
c1.OP1.2// \ .id � �/�˛

�
D ˛:

Then the surjectivity of the top arrow follows.
To prove injectivity of the top arrow consider the diagram

CH�.Y /˝ CH�.BPGL2/ CH�.Y � BPGL2/

CH�.Y /˝ CH�.BU/ CH�.Y � BU/

id˝�� .id��/�

Š

induced by the flat pullback ��. Similar to above, we see that for ˛ 2 CH�.BPGL2/ we have

��

�
1

2
c1.OP1.2// \ ��˛

�
D ˛:

Thus the map id˝ �� is injective and thus the top arrow must be injective as well, finishing
the proof.

For the next results, we say that an equidimensional, locally finite-type stack X has the
Chow Künneth generation property up to codimension d if (2.1) is surjective in all codimen-
sions up to d .

Lemma 2.8. Let X;X 0 be equidimensional algebraic stacks, locally of finite type over
k and admitting good filtrations. Then for X;X 0 having the CKgP (up to codimension d ), also
X �X 0 has the CKgP (up to codimension d ).

Proof. Fixing d � 0 and U � X a finite-type open substack with complement of codi-
mension at least d C 1, one has

CHd .X/ Š CHd .U /;

and similarly
CHd .X � Y / Š CHd .U � Y /

for any finite-type algebraic stack Y . This follows from the definition of the Chow groups as
a limit (see the discussion above [5, Proposition A.5]). Using this we can reduce the proof
of the lemma to the case where X (and similarly X 0) are of finite type over k, where it then
follows from simple diagram chasing.

8) See the proof of Proposition 2.14 for a variant of this computation.
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Lemma 2.9. LetZ be an algebraic stack, locally finite type over k, stratified by quotient
stacks and with a good filtration by finite-type substacks. Let bZ ! Z be a proper, surjective
map representable by Deligne–Mumford stacks such that bZ has the CKgP. Then Z has the
CKgP for stacks Y stratified by quotient stacks.

If both Z and bZ are equidimensional with dimbZ � dimZ D e � 0; then if bZ has the
CKgP up to codimension d , Z has the CKgP (for stacks Y stratified by quotient stacks) up to
codimension d � e.

Proof. Let Y be an algebraic stack of finite type over k, stratified by quotient stacks.
Then in the diagram

(2.3)
CH�.bZ � Y / CH�.Z � Y /

CH�.bZ/˝ CH�.Y / CH�.Z/˝ CH�.Y /

the top arrow is surjective by [5, Proposition B.19] (and [5, Remark B.21]) applied to the mapbZ � Y ! Z � Y and the left arrow is surjective since bZ has the CKgP. It follows that

CH�.Z/˝ CH�.Y /! CH�.Z � Y /

is surjective, so Z has the CKgP for stacks Y stratified by quotient stacks.
The statement with bounds on codimensions follows by looking at the correct graded

parts of the above diagram and noting that codimension d 0 cycles on bZ push forward to
codimension d 0 � e cycles on Z.

Proposition 2.10. Let X be an algebraic stack over k with a good filtration by finite-
type substacks and let U � X be an open substack with complement Z D X n U such that U
and Z have the CKgP. Then X has the CKgP.

If X is equidimensional and Z has pure codimension e, U has the CKgP up to codimen-
sion d and Z has the CKgP up to codimension d � e, then X has the CKgP up to codimen-
sion d .

Proof. For Y a finite-type stack, using excision exact sequences on X and X � Y we
obtain a commutative diagram

CH�.Z � Y / CH�.X � Y / CH�.U � Y / 0

CH�.Z/˝ CH�.Y / CH�.X/˝ CH�.Y / CH�.U /˝ CH�.Y / 0

with exact rows. The vertical arrows for U;Z are surjective since U;Z have the CKgP. By the
four lemma, the middle arrow is surjective as well, so X has the CKgP. Again, the variant with
bounds on the codimension follows by looking at the correct graded parts of the above diagram,
noting that codimension d 0 cycles on Z push forward to codimension d 0 C e cycles on X .

Combining these ingredients, we are now ready to prove Proposition 2.6.
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Proof of Proposition 2.6. We will show that for all d � 0, all spaces M0;n have the
CKgP for finite-type stacks Y having a stratification by quotient stacks up to codimension d
by induction on d . Every stack has the CKgP up to codimension d D 0, so the induction
start is fine. Let now d � 1, then we want to apply Proposition 2.10 for X DM0;n with
U DMsm

0;n. Then U has the CKgP by Proposition 2.7. Its complement Z D 𝜕M0;n admits
a proper, surjective, representable cover

(2.4) bZ D a
I�¹1;:::;nº

M0;I[¹pº �M0;Ic[¹p0º ! Z D 𝜕M0;n �M0;n

by gluing maps. Note that bZ and Z are both equidimensional of the same dimension. By
induction the spaces M0;I[¹pº and M0;Ic[¹p0º have the CKgP up to codimension d � 1 (note
that they both have at least one marking). So by Lemma 2.8 their product has the CKgP up to
codimension d � 1. The stabilizer group of each geometric points of Z D 𝜕M0;n is affine and
hence by [28, Proposition 3.5.9] the stack Z is stratified by quotient stacks. By Lemma 2.9 we
have thatZ has the CKgP up to codimension d � 1. This is sufficient to apply Proposition 2.10
to conclude that M0;n has the CKgP for finite-type stacks Y having a stratification by quotient
stacks up to codimension d as desired.

Proof of Theorem 1.2. We show CHd .M0;n/ D Rd .M0;n/ (for all n � 0) by induction
on d � 0. The induction start d D 0 is trivial. So let d � 1 and assume the statement holds in
codimensions up to d � 1. By excision we have an exact sequence

CHd�1.𝜕M0;n/! CHd .M0;n/! CHd .Msm
0;n/! 0:

By Lemma 2.1 all elements of CHd .Msm
0;n/ have tautological representatives, so it suffices to

show that this is also true for elements coming from CHd�1.𝜕M0;n/. Using the parametriza-
tion (2.4) it suffices to show that codimension d � 1 classes on products M0;n1

�M0;n2
are

tautological (where n1; n2 � 1). By Proposition 2.6 we have a surjection

CH�.M0;n1
/˝ CH�.M0;n2

/! CH�.M0;n1
�M0;n2

/

and by the induction hypothesis, all classes on the left side are (tensor products of) tautological
classes up to degree d � 1. Since tensor products of tautological classes map to tautological
classes under gluing maps, this finishes the proof.

2.3. Higher Chow–Künneth property. The goal of this subsection is to give a back-
ground to compute the higher Chow group of Msm

� for prestable graphs � . Computing higher
Chow groups of Msm

0;n has two different flavors. When n D 0; 1; 2 or 3, we use the projective
bundle formula and its consequences. When n � 4, Msm

0;n is a hyperplane complement inside
affine space and we use the motivic decomposition from [8].

Below we study the Chow–Künneth property for higher Chow groups. Unlike the Chow–
Künneth property for Chow groups, formulating the Chow–Künneth property for higher Chow
groups in general is rather complicated, see [44, Theorem 7.2]. Below, we focus on the case
of the first higher Chow group CH�.X; 1/ defined in [28]9). To simplify the notation, we write
CH�.k; �/ WD CH�.Spec k; �/.

9) In [28], this group is denoted by A�.X/.
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Definition 2.11. A quotient stack X over k is said to have the higher Chow Künneth
property (hCKP) if for all algebraic stacks Y of finite type over k the natural morphism

(2.5) CH�.X; �/˝CH�.k;�/ CH�.Y; �/! CH�.X � Y; �/

is an isomorphism in total degree � D 1. A quotient stack X over k is said to have the higher
Chow Künneth generating property (hCKgP) if the above morphism is surjective.

Expanding this definition slightly, the degree � D 1 part of the left-hand side of (2.5) is
given by the quotient

(2.6)
.CH�.X; 1/˝Q CH�.Y; 0//˚ .CH�.X; 0/˝Q CH�.Y; 1//

CH�.k; 1/˝Q CH�.X; 0/˝Q CH�.Y; 0/
;

where
˛ ˝ ˇX ˝ ˇY 2 CH�.k; 1/˝Q CH�.X; 0/˝Q CH�.Y; 0/

maps to �
.˛ � ˇX /˝ ˇY ;�ˇX ˝ .˛ � ˇY /

�
in the numerator of (2.6). The cokernel of the following map

CH1.k; 1/˝ CH��1.X/! CH�.X; 1/

is called the indecomposable part CH
�
.X; 1/ of CH�.X; 1/. For example CH

1
.Spec k; 1/ D 0.

We summarize some properties for higher Chow groups of quotient stacks X D ŒU=G�.
In this case, the definition of the first higher Chow group of X from [28] coincides with the
definition using Bloch’s cycle complex of the finite approximation of UG D U �G EG from
[11]. For the properties of higher Chow groups presented below, many of the proofs follow
from this presentation.

Lemma 2.12. Let X be a quotient stack and E ! X be a vector bundle of rank r C 1,
and let � W P .E/! X be the projectivization. Let O.1/ be the hyperplane line bundle on
P .E/. Then the map

�E .�/ W

rM
iD0

CH�Ci .X; 1/! CH�Cr.P .E/; 1/

given by

.˛0; : : : ; ˛r/ 7!

rX
iD0

c1.O.1//
i
\ ��˛i

is an isomorphism.

Proof. Let X D ŒU=G� be a quotient stack. Choose a G-representation V and an open
subspace W � V on which G acts freely. We can take a representation V so that the codimen-
sion of V nW in V has arbitrary large codimension. By [11, Section 2.7], the group CH�.X; 1/
is isomorphic to CH�.U �W=G; 1/ and the similar formula holds for CH�.P .E/; 1/. Now the
property follows from the projective bundle formula [6, Theorem 7.1].10)

10) See also [21, Theorem 4.2.2].
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An affine bundle of rank r overX is a morphism B ! X such that locally (in the smooth
topology) on X , B is a trivial affine r plane over X [28, Section 2.5]. We assume that the
structure group of an affine bundle of rank r is the group of affine transformations Aff.r/ in
GL.r C 1/. Therefore there exists an associated vector bundle E of rank r C 1 and an exact
sequence of vector bundles

0! F ! E ! OX ! 0:

The complement of P .F / ,! P .E/ is the affine bundle B .
We have a homotopy invariance property of higher Chow groups for affine bundles (see

also [31, Proposition 2.3]).

Corollary 2.13. LetX be a quotient stack and ' W B ! X be an affine bundle of rank r .
Then

'� W CH�.X; 1/! CH�Cr.B; 1/

is an isomorphism.

Proof. Let p and q be projections from P .E/ and P .F / to X respectively. There exists
an excision sequence

CH�.P .F /; 1/
i�
��! CH�.P .E/; 1/

j�

��! CH�.B; 1/
𝜕
��! CH�.P .F //

i�
��! CH�.P .E//

because all stacks are quotient stacks [11]. Since P .F / is the vanishing locus of the canonical
section of OP.E/.1/, we have

i�q
�˛ D c1.OP.E/.1// \ p

�˛ for ˛ 2 CH�.X/

by [16, Lemma 3.3]. As ˛ runs through a basis of CH�.X/, the classes

c1.OP.F /.1//
`
\ q�˛ for 0 � ` � r � 1

run through a basis of CH�.P .F // by Lemma 2.12. Pushing them forward via i , the classes

(2.7) i�
�
c1.OP.F /.1//

`
\ q�˛

�
D c1.OP.E/.1//

`C1
\ p�˛ for 0 � ` � r � 1; ˛

form part of a basis of CH�.P .E//. In particular, the map i� W CH�.P .F //! CH�.P .E// is
injective and furthermore, we see that

(2.8) p� W CH�.X; 1/! CH�.P .E/; 1/=CH�.P .F /; 1/

gives an isomorphism.
The injectivity of i� implies (via the excision sequence above) that j � is surjective.

Using Lemma A.2, formula (2.7) holds verbatim for higher Chow classes ˛ 2 CH�.X; 1/ so
i� W CH�.P .F /; 1/! CH�.P .E/; 1/ is injective. Thus the excision sequence implies that j �

induces an isomorphism

(2.9) j � W CH�.P .E/; 1/=CH�.P .F /; 1/! CH�.B; 1/:

But since '� D j �p�, we know that ' is an isomorphism as the composition of the two
isomorphisms (2.9) and (2.8).
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Proposition 2.14. For n D 0; 1; 2 or 3, the stacks X DMsm
0;n satisfy the hCKP for

quotient stacks Y . Moreover, we have CH
�
.X; 1/ D 0 and the natural morphism

(2.10) CH�.X/˝Q CH�.Y; 1/! CH�.X � Y; 1/

is an isomorphism. In particular, setting Y D Spec k, we find

CH�.Msm
0;n; 1/ Š CH�.Msm

0;n/˝Q CH�.k; 1/:

Proof. When n D 3, Msm
0;3 D Spec k, so there is nothing to prove.

When nD 2, we use finite-dimensional approximation ofBGm via projective spaces PN ,
similar to the proof of [36, Lemma 2]. Indeed, for the vector bundle ŒANC1=Gm�! BGm,
pullback induces an isomorphism of Chow groups and ŒANC1=Gm� is isomorphic to PN away
from codimension N C 1. This shows the known identity

CH`.BGm/ Š CH`.PN / for ` � N:

Similarly, for Y a quotient stack, ŒANC1 � Y=Gm� is a vector bundle over BGm � Y . By
[11, Proposition 5], the higher Chow group of ŒANC1 � Y=Gm� and PN � Y is isomorphic
up to degree ` � N . One can use the homotopy invariance of higher Chow groups proven in
[28, Proposition 4.3.1] to show that we have

CH`.BGm � Y; 1/ Š CH`.PN � Y; 1/ for ` � N:

On the other hand, the natural morphism

CH�.PN /˝ CH�.Y; 1/! CH�.PN � Y; 1/

is an isomorphism by Lemma 2.12. Combining with the equalities above, this shows that the
map

(2.11) CH�.BGm/˝ CH�.Y; 1/! CH�.BGm � Y; 1/

is an isomorphism. This shows the hCKP of BGm.
When n D 1, we have Msm

0;1 Š BU for U D Ga ÌGm by Lemma 2.1. We already
saw that for any finite-type stack Y the map BGm � Y ! BU � Y is an affine bundle. By
Corollary 2.13 we have the homotopy invariance

CH�.BU � Y; 1/ Š CH�.BGm � Y; 1/

for all quotient stacks Y . Then the hCKP and the vanishing CH
�
.BU ; 1/ D 0 for BU follow

from the corresponding properties of BGm proven above.
We are left with the case n D 0. For any quotient stack Y consider a commutative diagram

CH�.Y; 1/˝ CH�.BPGL2/ CH�.Y � BPGL2; 1/

CH�.Y; 1/˝ CH�.BU/ CH�.Y � BU ; 1/Š

id˝�� .id��/�

induced by the projective pushforward ��. We start by proving surjectivity of .id � �/�. By
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[5, Remark B.20] the morphism id � � can be factorized as

Y � BU Y � P .E/

Y � BPGL2,

i

id��
p

where E is a rank 3 vector bundle E on BPGL2 associated to H 0.P1;OP1.2//. Let

� D c1.OP.E/.1//

be the relative hyperplane class. For any class ˛ in CH.Y � BPGL2; 1/, we have

.id � �/�..i��/ � .id � �/�˛/ D p�i�..i��/ � i�p�˛/

D p�.� � i�.i
�.p�˛///

D 2p�.�
2
� p�˛/

D 2˛;

where the first equality comes from the functoriality of pushforward and Gysin pullback for
higher Chow groups and the second equality is the projection formula (A.3) from Appendix A.
The third equality comes from Lemma A.2 and the factor of two comes from the fact that
the map BU ! P .E/ is the second Veronese embedding of fiberwise degree two. The fourth
equality comes from [30, Proposition 4.6]. Therefore .id � �/� is surjective.

To prove injectivity of the top arrow consider the diagram

CH�.Y; 1/˝ CH�.BPGL2/ CH�.Y � BPGL2; 1/

CH�.Y; 1/˝ CH�.BU/ CH�.Y � BU ; 1/

id˝�� .id��/�

Š

induced by the flat pullback ��. As seen in the proof of Proposition 2.7, the map

�� W CH�.BPGL2/! CH�.BU/

is injective and thus the left arrow of the above diagram is likewise injective. Hence the top
arrow is an isomorphism, finishing the proof.

The language of motives is a convenient way to state the higher Chow–Künneth property
for M0;n in the case n � 4. For simplicity, let k be a perfect field.11) Let DM.kIQ/ be the
Voevodsky’s triangulated category of motives over k with Q-coefficients. Let Sch=k be the
category of separated schemes of finite type over k. Then there exists a functor

M W Sch=k ! DM.kIQ/

which sends a scheme to its motive. The category DM.kIQ/ is a tensor triangulated cate-
gory, with a symmetric monoidal product ˝ and M preserves the monoidal structure, namely
M.X �k Y / D M.X/˝M.Y /. See [35] for the basic theory of motives.

11) This assumption can be removed by the work of Cisinski and Déglise, see [44, Theorem 5.1]
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There is an invertible object, called the Tate motive

Q.1/Œ2� 2 DM.kIQ/;

and by taking its shifting and tensor product we have Q.a/Œn� for any integers a and n. Define
the motivic cohomology of a scheme X (in Q-coefficient) as

H i .X;Q.j // D HomDM.kIQ/.M.X/;Q.j /Œi �/:

The motivic cohomology is a bi-graded module over the motivic cohomology of the base
field k. The motivic cohomology of k is related to Milnor’s K-theory of fields.

In [45] Voevodsky proved that for any smooth scheme X over k, the higher Chow group
and the motivic cohomology have the following comparison isomorphism:

(2.12) H i .X;Z.j // Š CHj .X; 2j � i/Z

where the right-hand side is Bloch’s higher Chow group introduced in [6]. Bloch’s definition
of higher Chow groups will be used to compute the connecting homomorphism of the local-
ization sequence. When X is a smooth scheme over k, the higher Chow group and the motivic
cohomology have product structure

CHa.X; p/˝ CHb.X; q/! CHaCb.X; p C q/

and the comparison isomorphism (2.12) is a ring isomorphism ([25]).
Now we summarize results from [8]. For a hyperplane complement U � AN , there is

a finite index set I and ni � 0 such that

M.U / Š
M
i2I

Q.ni /Œni �:

As a corollary, CH�.U; �/ is a finitely generated free module over CH�.k; �/ and

(2.13) CH`.U; 1/Z D

´
H 0.U;O�U / if ` D 1,

0 otherwise.

The isomorphism CH`.U; 1/ZŠH 1.U;Z.1//ŠH 0.U;O�U / follows from [35, Corollary 4.2].
There exists an isomorphism

CH1.U; 1/ Š CH
1
.U; 1/˚ CH1.k; 1/:

Example 2.15. Let U D Spec kŒx; x�1� be the complement of the origin in the affine
line. Then

CH1.U; 1/Z Š
G
a2Z

k�hxai Š Z˚ k�

and the element m 2 CH0.k/Z D Z acts by xa 7! xma and � 2 CH1.k; 1/Z D k� acts by
xa 7! �xa. In fact, CH�.U; �/ is generated by the fundamental class and hxi over CH�.k; �/.

Proposition 2.16. Let U � AN be a hyperplane complement as above. Then the hCKP
holds for quotient stacks.
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Proof. Let Y be a quotient stack and hence Y � U is also a quotient stack. Note that Y
admits a vector bundle E such that the vector bundle is represented by a scheme off a locus of
arbitrarily high codimension. SinceU is a scheme, the pullback ofE to Y � U also satisfies the
same property. For higher Chow groups of quotient stacks, the homotopy invariance for vector
bundle and the extended localization sequence is proven in [30]. Therefore we may assume that
Y is a scheme. When Y is a scheme, there exist isomorphisms

CHl.Y � U; 1/ D Hom.M.Y � U/;Q.l/Œ2l � 1�/

D Hom.M.Y /˝M.U /;Q.l/Œ2l � 1�/

D Hom.
M
i2I

M.Y /.ni /Œni �;Q.l/Œ2l � 1�/

D

M
i2I

Hom.M.Y /.ni /Œni �;Q.l/Œ2l � 1�/

D

M
i2I

Hom.M.Y /;Q.l � ni /Œ2l � ni � 1�/

D

M
i2I

CHl�ni .Y; 1 � ni /

D

M
ni�1

CHl�ni .Y; 1 � ni /;

where the fifth equality comes from the cancellation theorem. In the proof of [8, Proposi-
tion 1.1], the index ni D 0 corresponds to CH0.U; 0/ and the indices ni D 1 corresponds to
generators of CH

1
.U; 1/ over Q. Therefore we get the isomorphism.

After identifying

M0;n D ¹.x1; : : : ; xn/ 2 An�3 W xi ¤ xj for i ¤ j; xi ¤ 0; xj ¤ 1º � An�3;

Proposition 2.14 and 2.16 compute the higher Chow group of
Q
v2V.�/Msm

0;n.v/
for any pre-

stable graph � .

Now we revisit the CKP for the stack M0;n. We recall the definition of Bloch’s higher
Chow groups [6]. Let

�m D Spec.kŒt0; : : : ; tm�=.t0 C � � � C tm � 1//

be the algebraicm simplex. For 0� i1 < � � �< ia �m, the equation ti1 D � � � D tia D 0 defines a
face �m�a � �n. Let X be an equidimensional quasi-projective scheme over k. Let zi .X;m/
be the free abelian group generated by all codimension i subvarieties of X ��m which inter-
sect all faces X ��l properly for all l < m. Taking the alternating sum of restriction maps
to i C 1 faces of X ��i , we get a chain complex .z�.X;m/; ı/. The higher Chow group
CHi .X;m/ is the i -th cohomology of the complex z�.X;m/.

When m D 1, the proper intersection is equivalent to saying that cycles are not con-
tained in any of the (strict) faces. Let R D �1 n ¹Œ0�; Œ1�º. Then the group z�.X; 1/ is equal to
z�.X �R/ and the differential

� � � �! z�.X �R/
ı
�! z�.X/ �! 0
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is given by specialization maps. If
P
aiWi is a cycle in X �R,

(2.14) ı
�X

aiWi

�
D

X
aiWi \X � Œ0� �

X
aiWi \X � Œ1�;

where Wi is the closure of Wi in X ��1. In the following, given a product X � Y and classes
˛ 2 CH�.X; a/, ˇ 2 CH�.Y; b/, we write ˛�ˇ 2CH�.X�Y;aCb/ for their exterior product.

Lemma 2.17. Let X1 and X2 be algebraic stacks stratified by quotient stacks, and let
j1 W Z1 ,! X1 and j2 W Z2 ,! X2 be closed substacks with complements

i1 W U1 D X1 nZ1 ,! X1; i2 W U2 D X2 nZ2 ,! X2;

where U1; U2 are quotient stacks. Let Z12 D X1 �X2 n U1 � U2. Denote by

𝜕1 W CH�.U1; 1/! CH�.Z1/;

𝜕2 W CH�.U2; 1/! CH�.Z2/;

𝜕 W CH�.U1 � U2; 1/! CH�.Z12/

the boundary maps for the inclusions U1 � X1, U2 � X2, U1 � U2 � X1 �X2.

(a) For ˛ 2 CH�.U1; 1/ and ˇ 2 CH�.U2/,

𝜕.˛ � ˇ/ D 𝜕1.˛/ � ˇ in CH�.Z12/

where ˇ 2 CH�.X2/ is any extension of ˇ.

(b) The following diagram commutes:

(2.15)

CH�.U1; 1/˝ CH�.X2/

˚ CH�.X1/˝ CH�.U2; 1/

CH�.Z1/˝ CH�.X2/

˚ CH�.X1/˝ CH�.Z2/

CH�.U1 � U2; 1/ CH�.Z12/,

.𝜕1˝id/˚.id˝𝜕2/

.id˝i�2 /˚.i
�
1˝id/

𝜕

where the arrow on the right is induced by the natural map

Z1 �X2 tX1 �Z2 ! Z12:

Proof. (a) We first prove that the right-hand side is well-defined. For a different choice
of extension ˇ

0
of ˇ, there exists  2 CH�.Z2/ such that j2� D ˇ � ˇ

0
. Therefore, the class

𝜕1.˛/ � .ˇ � ˇ
0
/ on Z12 is supported on Z1 �Z2. In particular, it is a class pushed forward

from CH�.X1 �Z2/. Consider the following commutative diagram:

Z1 �Z2 X1 �Z2

Z1 �X2 Z12.

j1�id

id�j2 g

f

Then we have

𝜕1.˛/ � .ˇ � ˇ
0
/ D f�.id � j2/�.𝜕1.˛/ � / D g�.j1 � id/�.𝜕1.˛/ � /:

This class vanishes because .j1/�𝜕1˛ vanishes as a class in CH�.X1/.
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We first prove the equality when X1; X2 are schemes. The proof follows from dia-
gram chasing. Recall that the connecting homomorphism 𝜕 W CH�.U1 � U2; 1/! CH�.Z12/
is defined using the following diagram:

z�.Z12; 1/ z�.Z12/ 0

z�.X1 �X2; 1/ z�.X1 �X2/ 0

z�.U1 � U2; 1/ z�.U1 � U2/ 0.

j�

ı

i�

ı

For each class in CH�.U1 � U2; 1/ take a representative in z�.U1 � U2; 1/. By taking a pre-
image under i�, applying the map ı and taking a preimage under j�, we get a class in CH�.Z12/
which corresponds to the image of 𝜕. Fix a representative of ˛ in z�.U1 �R/ and ˇ in z�.U2/.
Let ˛ be the closure of ˛ in X1 �R and let ˇ be the closure of ˇ in X2. Let ę be the closure
of ˛ in X1 �A1. Then to compute 𝜕.˛ � ˇ/ we observe that ˛ � ˇ D i�.˛ � ˇ/. Applying ı,
we have

ı.˛ � ˇ/ D ę� ˇ \X1 � Œ0� �X2 � ę� ˇ \X1 � Œ1� �X2
D j�.ę\X1 � Œ0� � ę\X1 � Œ1�/ � ˇ
D j�.𝜕1.˛/ � ˇ/

and this proves the equality.
In general, let U1 be a quotient stack by assumption. For a projective morphism S1 ! U1

from a reduced stack S1, there exists a projective morphism T1!X1 such that S1ŠU1�X1
T1

([28, Corollary 2.3.2]). LetE1 be a vector bundle on S1. By [28, Proposition 2.3.3], there exists
a projective modification T 01 ! T1 and a vector bundle E 01 which restricts to E1. We perform
a similar construction for the quotient stack U2. The image of CH�.U1; 1/˝ CH�.U2/ under
the boundary map

𝜕 W CH�.U1 � U2; 1/! CH�.Z12/

is defined by the limit of boundary maps for naive higher Chow groups ofE1 �E2 � E 01 �E
0
2

(see [28, (4.2.2)]). The corresponding computation is precisely equal to the case above. There-
fore the same formula holds for stacks X1 and X2.

(b) Let ˛ ˝ ˇ 2 CH�.U1; 1/˝ CH�.X2/. We take a natural extension ˇ of i�2 ˇ. Then
by (a), we have

𝜕 ı .id˝ i�2 /.˛ ˝ ˇ/ D 𝜕.˛ � i
�
2 ˇ/

D 𝜕1.˛/ � ˇ
D 𝜕1 ˝ id.˛ ˝ ˇ/:

The same computation holds for CH�.X1/˝ CH�.U2; 1/ and we get the commutativity of
diagram (2.15).

Remark 2.18. By applying Lemma 2.17 to X1 D U1 D Spec k (so that Z1 D ;) and
Z D Z2 � X D X2 with U D X nZ, we find that the composition

CH�.k; 1/˝ CH�.U /! CH�.U; 1/
𝜕
�! CH�.Z/
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vanishes since for ˛ 2 CH�.k; 1/ and ˇ 2 CH�.U / we have 𝜕.˛ ˝ ˇ/ D 𝜕1.˛/˝ ˇ D 0 as
𝜕1.˛/ lives in CH�.Z1/ D CH�.;/ D 0. This implies that 𝜕 factors through the indecompos-
able part CH�.U; 1/ of CH�.U; 1/.

To prove the CKP for M0;n, we want to use that via the boundary gluing morphisms, the
space M0;n is stratified by (finite quotients of) products of spaces Msm

0;ni
, for which we know

the CKP. The following proposition tells us that indeed the CKP for such a stratified space can
be checked on the individual strata.

Proposition 2.19. Let X be an algebraic stack, locally of finite type over k with a good
filtration and stratified by quotient stacks X D

S
Xi . Suppose each stratum Xi has the CKP

and the hCKgP for quotient stacks. Then X has the CKP for quotient stacks.

Proof. SinceX has a good filtration, the Chow groups ofX andX � Y of a fixed degree
can be computed on a sufficiently large finite-type open substack. This allows us to reduce to
the case where X has finite type.

Now by assumption, there exists a nonempty open substack U � X which is a quotient
stack and has the CKP. Let Z D X n U be the complement. For a quotient stack Y consider
a commutative diagram

(2.16)

CH�.U; 1/˝ CH�.Y / CH�.U � Y; 1/

CH�.Z/˝ CH�.Y / CH�.Z � Y /

CH�.X/˝ CH�.Y / CH�.X � Y /

CH�.U /˝ CH�.Y / CH�.U � Y /

0 0,

1

2

3

4

where the columns are exact by the excision sequence. Since U has the CKP, the arrow 4 is
an isomorphism and by Noetherian induction, the same is true for 2. We extend the domain of
the map 1 by inserting an extra component CH�.U /˝ CH�.Y; 1/. Then the diagram

CH�.U; 1/˝ CH�.Y /˚ CH�.U /˝ CH�.Y; 1/ CH�.Z/˝ CH�.Y /

CH�.U � Y; 1/ CH�.Z � Y /

 01

commutes by applying Lemma 2.17 to the map U � Y � X � Y . Note that the new factor
CH�.U /˝ CH�.Y; 1/ maps to CH�.X/˝ CH�.Y n Y / D 0 under the top arrow, and so in
particular the left column of (2.16) remains exact after the modification. Furthermore, the mod-
ified map  01 is surjective because U has the hCKgP for quotient stacks. Therefore 3 is an
isomorphism by applying the five lemma to the modified version of (2.16).
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To apply this to the stratification of M0;n by prestable graphs, we need a small further
technical lemma, due to the fact that the strata of M0;n are quotients of products of M0;ni

by
finite groups. The notion of taking a quotient of an algebraic stack by a finite group action is
defined in [42]. See also [5, footnote 9].

Lemma 2.20. Let M be an algebraic stack of finite type over k and stratified by quotient
stacks with an action of a finite étale group G over k. Then the quotient map � WM!M=G

induces an isomorphism

(2.17) �� W CH�.M=G/! CH�.M/G

from the Chow group of the quotient M=G to the G-invariant part of the Chow group of M.
On the other hand, the map

(2.18) �� W CH�.M/! CH�.M=G/

is a surjection.

Proof. The map � is representable and a principal G-bundle, hence in particular it is
finite and étale. Thus we can both pull back cycles and push forward cycles under � . For g 2 G
let �g WM!M be the action of g on M. Then the relation � ı �g Š � shows that ��g acts
as the identity on the image of �� and thus �� has image in the G-invariant part of CH�.M/.
The equality

�� ı �
�
D jGj � id W CH�.M=G/! CH�.M=G/

shows that �� is injective and that �� is surjective (since we work with Q-coefficients). On the
other hand, we have

�� ı �� D
X
g2G

��g W CH�.M/! CH�.M/

thus restricted on the G-invariant part, we again have

�� ı ��jCH�.M/G D jGj � id W CH�.M/G ! CH�.M/G ;

showing �� is surjective.

In the following, we typically apply the above lemma to the action of Aut.�/ on the
stack M� (and open substacks of M� ). Here Aut.�/ is the constant group scheme over k
associated to the abstract group of automorphisms of � , which thus is finite and étale over k.

Remark 2.21. The above lemma is also true for the first higher Chow groups with
Q-coefficients.

Corollary 2.22. For all n � 0, the stacks M0;n have the CKP for quotient stacks.

Proof. Recall that for a prestable graph � of genus 0 with n markings, there exists
the locally closed substack M� �M0;n of curves with dual graph exactly � . By Proposi-
tion 2.19, it suffices to show that the stacks M� have the CKP and the hCKgP for quotient
stacks. Now from [5, Proposition 2.4] we know that the restriction of the gluing map �� induces
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an isomorphism � Y
v2V.�/

Msm
0;n.v/

�
=Aut.�/

��
�!M� :

The product of spaces Msm
0;n.v/

has the CKP by Proposition 2.7 and the hCKgP for quotient
stacks by Proposition 2.14 and Proposition 2.16. From Lemma 2.20 and Remark 2.21 it follows
that the quotient of a space with the CKP (or hCKgP) under an action of a finite étale group
still has the CKP (or hCKgP), so by the above isomorphism all M� have the CKP and hCKgP
for quotient stacks. This finishes the proof.

We proved the Chow–Künneth property of M0;n with respect to quotient stacks. This
assumption comes from technical assumptions in [28]. For example, the extended excision
sequence is only proven when the open substack is a quotient stack. Such assumptions are
not necessary for a different cycle theory of algebraic stacks constructed in [24]. Therefore,
the following remark could remove the technical assumptions in the above Chow–Künneth
property.

Remark 2.23. LetX be an algebraic stack, locally of finite type over k. Let HBM
� be the

rational motivic Borel–Moore homology theory defined in [24]. There exists a cycle class map

cl W CH�.X/Q ! HBM
� .X/

which is compatible with projective pushforward, Chern classes and lci pullbacks. In [4], we
will show that the cycle class map cl is an isomorphism whenX is stratified by quotient stacks.

2.4. Tautological relations. In this subsection, we formulate and prove a precise form
of Theorem 1.4, see Theorem 2.31. Recall that for a prestable graph � , a decoration ˛ is an
element of CH�.M�/ given as a product ˛ D

Q
v ˛v where ˛v 2 CH�.M0;n.v// are monomi-

als in �- and  -classes on the factors M0;n.v/ of M� .

Definition 2.24. Define the strata space Sg;n to be the free Q-vector space with basis
given by isomorphism classes of decorated prestable graphs Œ�; ˛�.

By definition, the image of the map

Sg;n ! CH�.Mg;n/; Œ�; ˛� 7! ���˛

is the tautological ring R�.Mg;n/.12)

For the proofs below, it is convenient to allow decorations ˛v at vertices of � which are
combinations of monomials in �- and  -classes as follows.

Definition 2.25. Given a prestable graph � in genus 0 with n markings, an element

˛ D
Y

v2V.�/

˛v 2
Y

v2V.�/

CH�.M0;n.v//

12) From [5, Corollary 3.7] we see that there is a Q-algebra structure on Sg;n which makes this map into a
Q-algebra homomorphism, since products of decorated strata classes are given by explicit combinations of further
decorated strata classes.
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is said to be in normal form if

(a) for vertices v 2 V.�/ with n.v/ D 0, we have ˛v D �a2 for some a � 0,

(b) for vertices v 2 V.�/ with n.v/ D 1, we have ˛v D  bh , where h is the unique half-edge
at v and b � 0,

(c) for vertices v 2 V.�/ with n.v/ D 2, we have ˛v D  ch C .� h0/
c , where h; h0 are two

half-edges at v and c � 0,

(d) for vertices v 2 V.�/ with n.v/ � 3, we have that ˛v D 1 is trivial.

Note that because of the terms  c
h
C .� h0/

c in case c) above, the element ˛ is not
strictly speaking a decoration, since the ˛v are not monomials. However, given �; ˛ as in
Definition 2.25, we write Œ�; ˛� for the element in S0;n obtained by expanding ˛ in terms
of monomial decorations.

Definition 2.26. For g D 0 let Snf
0;n � S0;n be the subspace additively generated by

Œ�; ˛� for ˛ in normal form.13)

Definition 2.27. Let R0 2 Sg0;n0
be a tautological relation. Given g; n, we say that the

set of relations in Sg;n generated by R0 is the subspace of the Q-vector space Sg;n generated
by elements of Sg;n obtained by

� choosing a prestable graph � in genus g with n markings and a vertex v 2 V.�/ with
g.v/ D g0; n.v/ D n0,

� choosing an identification of the n0 half-edges incident to v with the markings 1; : : : ; n0
for Sg0;n0

,

� choosing decorations ˛w 2 CH�.Mg.w/;n.w// for all vertices w 2 V.�/ n ¹vº,

� gluing the relation R0 into the vertex v of � , putting decorations ˛w in the other vertices
and expanding as an element of Sg;n.

More generally, given any family .Ri0 2 Sgi
0;n

i
0
/i2I of tautological relations, we define the

relations in Sg;n generated by this family to be the sum of the spaces of relations generated by
the Ri0.

On the level of Chow groups, the relations in Definition 2.27 are of the form

(2.19) R D .��/�

�
��vR0 �

Y
w2V.�/n¹vº

��w˛w

�
D 0 2 CH�.Mg;n/;

where �v; �w are the projections from M� to the factors associated to v;w. The only additional
observation needed to make sense of the definition is that the left-hand side of (2.19) also makes
sense as an element of the strata algebra Sg;n if R is in Sg0;n0

and the ˛w are monomials in
�- and  -classes.

13) Note that at vertices v 2 V.�/ with n.v/ D 2 we have a choice of ordering of the two half-edges h; h0,
and the possible decorations ˛v D  ch C .� h0/

c differ by a sign for c odd. Still they generate the same subspace
of S0;n and the independence of this subspace from the choice of ordering of half-edges will be important in a proof
below.
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Example 2.28. Let n0 D 4 with markings labelled ¹3; 4; 5; hº and let R0 2 S0;n0
be

the WDVV relation
3

h

4

5

D

4

h

3

5

:

For a prestable graph

� D

1

2
w

h

v

3

4

5

in S0;5

and a decoration ˛w D �3, the corresponding relation is

1

2

3
�3 h

4

5

D

1

2

4
�3 h

3

5

:

Definition 2.29. Consider the family R0
�; of relations obtained by multiplying the

relations of �- and  -classes from Lemmas 2.2, 2.3 and 2.4 with an arbitrary monomial in �-
and  -classes. Define the space R�; � S0;n as the space of relations generated by R0

�; .
Define RWDVV � Snf

0;n as the space of relations obtained by gluing some WDVV relation
into a decorated prestable graph Œ�; ˛� in normal form at a vertex v with n.v/ � 4. In other
words, it is the space of relations generated by the WDVV relation as in Definition 2.27 where
we restrict to �; .˛w/w¤v such that Œ�; ˛� (with ˛v D 1) is in normal form.14)

Remark 2.30. Let us comment on the role of the sets of relations appearing above.
The relations R0

�; allow to write any monomial ˛ in �- and  -classes on M0;n as a sum
˛ D ˛0 C ˇ of

� a (possibly zero) monomial term ˛0 in �- and  -classes such that the trivial prestable
graph with decoration ˛0 is in normal form (implying that ˛0 restricts to a basis element
of CH�.Msm

0;n/ as computed in Lemma 2.1),

� a sum ˇ of generators Œ�i ; ˛i � supported in the boundary (i.e. with �i nontrivial).

The relations R�; allow to do the above at each of the vertices of a decorated stratum class
Œ�; ˛� and by a recursive procedure allow to write Œ�; ˛� as a sum of decorated strata classes in
normal form. The relations in RWDVV then encode the remaining freedom to express relations
among these classes in normal form generated by the WDVV relation. The following theorem
and the course of its proof make precise the statement that these processes describe tautological
relations on M0;n.

Theorem 2.31. The kernel of the surjection S0;n ! CH�.M0;n/ is given by

R�; CRWDVV:

In particular, we have

CH�.M0;n/ D S0;n=.R�; CRWDVV/:

14) Again we relax the condition of the ˛w being monomials and allow ˛w of the form  c
h
C .� h0/

c at
vertices of valence 2.
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We split the proof of the above theorem into two parts.

Proposition 2.32. The map Snf
0;n ,! S0;n ! S0;n=R�; is surjective.

Proof. The statement says that we can use �;  relations on each vertex to express
any decorated stratum class as a linear combination of stratum classes in normal form. This
follows from Lemma 2.2, 2.3 and 2.4 as described in Remark 2.30. In particular, for vertices
v of valency n.v/ D 2 and adjacent half-edges h; h0, we know that any class ˛v on M0;2 of
codimension c can be written as a multiple of c

h
plus an element of R�; . Up to such relations,

we have  c
h
D .� h0/

c by Lemma 2.2, and so we obtain a more symmetric decoration by
averaging and writing

˛v 2 Q � . ch C .� h0/
c/CR�; :

Theorem 2.33. The kernel of the surjection Snf
0;n ! CH�.M0;n/ is given by RWDVV.

The proof is separated into several steps. The overall strategy is to stratify M0;n by the
number of edges of the prestable graph � and use an excision sequence argument. For p � 0
we denote by M

�p
0;n the closed substack of M0;n of curves with at least p nodes. Similarly, we

denote by M
Dp
0;n the open substack of M

�p
0;n of curves with exactly p nodes. It is clear that

M
�p
0;n nM

Dp
0;n DM

�pC1
0;n

and also
M
Dp
0;n D

a
�2Gp

M� ;

where Gp is the set of prestable graphs of genus 0 with nmarkings having exactly p edges. For
the strata space S0;n, consider the decomposition

S0;n D
M
p�0

S
p
0;n

according to the number p of edges of graph � .15) This descends to decompositions

Snf
0;n D

M
p�0

S
nf;p
0;n ; RWDVV D

M
p�0

R
p
WDVV

for Snf
0;n and RWDVV. We note that R

p
WDVV is exactly the space of relations obtained by tak-

ing a prestable graph � with p � 1 edges, a decoration ˛ on � in normal form and inserting
a WDVV relation at a vertex v0 2 V.�/ with n.v0/ � 4.

From Proposition [5, Proposition 2.4] and Lemma 2.20 it follows that

CH�.MDp0;n / D
M
�2Gp

CH�.M�/ D
M
�2Gp

CH�.Msm
� /

Aut.�/;(2.20)

CH�.MDp0;n ; 1/ D
M
�2Gp

CH�.M� ; 1/ D
M
�2Gp

CH�.Msm
� ; 1/

Aut.�/:(2.21)

Note that we have a natural map S
nf;p
0;n ! CH�.M�p0;n/.

15) This decomposition is not equal to the standard decomposition of S0;n via degree of a class.
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Lemma 2.34. The composition

S
nf;p
0;n ! CH�.M�p0;n/! CH�.MDp0;n /

is an isomorphism.

Proof. First we note that S
nf;p
0;n decomposes into a direct sum of subspaces S

nf;�
0;n indexed

by prestable graphs � 2 Gp, according to the underlying prestable graph of the generators.
The analogous decomposition of CH�.MDp0;n / is given by formula (2.20). Now for two non-
isomorphic prestable graphs � and � 0 with the same number p of edges, the induced map
S

nf;�
0;n ! CH�.M� 0/ vanishes. Indeed, the locally closed substack M� 0 is disjoint from the

image of the gluing map �� and all generators of S
nf;�
0;n are pushforwards under �� . Thus we

are reduced to showing that S
nf;�
0;n ! CH�.M�/ is an isomorphism. The image of a generator

Œ�; ˛� under this map is obtained by pushing forward ˛ 2 CH�.M�/ to M
�p
0;n under �� and

restricting to the open subset M� . From the cartesian diagram

M� M
�p
0;n

Msm
� M� DMsm

� =Aut.�/

��

�sm
�

in which the vertical arrows are open embeddings, it follows that this is equivalent to first
restricting ˛ to Msm

� and then pushing forward to M� . As we saw in (2.20), we can identify
CH�.M�/ with the Aut.�/-invariant part of CH�.Msm

� / via pullback under �sm
� . But clearly

(2.22) .�sm
� /
�Œ�; ˛� D .�sm

� /
�.�sm

� /�˛ D
X

�2Aut.�/

��˛;

where the automorphisms � act on Msm
� by permuting the factors.

Now by Proposition 2.7 we have

CH�.Msm
� / D

O
v2V.�/

CH�.Msm
g.v/;n.v//:

Thus it follows from Lemma 2.1 that the set of all possible ˛ such that Œ�; ˛� is in normal form
is a basis of CH�.Msm

� /. Now given such an ˛ 2 CH�.Msm
� /, consider the orbit of ˛ under

Aut.�/, recalling that the projection of ˛ to the Aut.�/-invariant part of CH�.Msm
� / is given

by
P
�2Aut.�/ �

�˛. Then there are two possibilities:

� either the orbit contains �˛, in which case
P
�2Aut.�/ �

�˛ D 0, and likewise we have
Œ�; ˛� D Œ�;�˛� D 0 in the strata algebra. This can happen if there exists a vertex v of �
of valency 2 and an automorphism � of � switching the two half-edges adjacent to v, if
˛ has a decoration  c

h
C .� h0/

c at v with c odd.
� or the distinct elements in the orbit are linearly independent in CH�.Msm

� /. This follows
from the fact that ˛ is already determined up to sign by the distribution of its degree to
the factors Mg.v/;n.v/ of M� , so any two elements of the orbit which are not equal have
pairwise distinct such multidegrees.

Basis elements ˛ 2 CH�.Msm
� / of the first type neither contribute to S

nf;p
0;n nor to CH�.MDp0;n /.

For basis elements of the second type, the automorphisms � of � act on them by permutation.
Hence a basis of the Aut.�/-invariant part of CH�.Msm

� / is given by the sums of orbits of these
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basis elements (with the dimension of CH�.Msm
� /

Aut.�/ being the number of such orbits). Now
recall that we chose the basis of S

nf;�
0;n to be the set of Œ�; ˛� in normal form up to isomorphism.

In other words, one can fix some ordering on the half-edges of � , look at all decorations ˛ in
normal form, and choose a representative in each Aut.�/-orbit. Then this chosen basis maps via
(2.22) to the basis of CH�.Msm

� /
Aut.�/, by sending the representative ˛ of an Aut.�/-orbit to

the sum
P
�2Aut.�/ �

�˛ of the elements of the orbit. The fact that distinct elements of an orbit
are linearly independent implies that the map ˛ 7!

P
�2Aut.�/ �

�˛ is injective, since there can
be no cancellation between different entries of the orbit.

Next we realize the WDVV relation as the image of the connecting homomorphism 𝜕 of
the excision sequence

(2.23) CH�.MDp0;n ; 1/
𝜕
�! CH��1.M�pC10;n /! CH�.M�p0;n/! CH�.MDp0;n /! 0:

By [5, Proposition 2.4], the stack M
Dp
0;n is a quotient stack and hence the sequence (2.23) is

exact by [28, Proposition 4.2.1].
Before we study the map 𝜕 in the sequence (2.23), we consider an easier situation: we

show that in the setting of the moduli spaces M0;n of stable curves, we can explicitly compute
the connecting homomorphism 𝜕, see Proposition 2.36 below. In the proof, we will need the
following technical lemma about the connecting homomorphisms of excision sequences.

Lemma 2.35. Let X be an equidimensional scheme and let

Z0
j 0

�! Z
j
�! X

be two closed immersions. Consider the open embedding

U D X nZ
i
�! U 0 D X nZ0:

Then we have a commutative diagram

(2.24)
CHn.U 0; 1/ CHn.Z0/

CHn.U; 1/ CHn.Z/

i�

𝜕0

j 0�

𝜕

where 𝜕 and 𝜕0 are the connecting homomorphisms for the inclusions of U and U 0 in X .

Proof. Elements of CHn.U 0; 1/ are represented by cycles
P
aiWi on U 0 ��1 with the

Wi of dimension nC 1 intersecting the faces of U 0 � 𝜕�1 properly. On the one hand, to evalu-
ate the connecting homomorphism 𝜕0, we form the closuresWi in X ��1 and take alternating
intersections with faces. This is a sum of cycles of dimension n supported on Z0 � 𝜕�1 and
via j 0� we regard it as a sum of cycles on Z � 𝜕�1.

On the other hand, to evaluate 𝜕 ı i� we first restrict all Wi to U ��1, take the closure
Wi \ U ��1 and take alternating intersection with faces. But the only way that this closure
can be different fromWi is whenWi has generic point inZ ��1. But then it defines an element
of zn.Z; 1/ and thus it maps to zero in CH�.Z/.
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Proposition 2.36. For n � 4, the image of the connecting homomorphism 𝜕 of

CH1.M0;n; 1/
𝜕
�! CH0.M

�1

0;n/
��
�! CH1.M0;n/ �! 0 D CH1.M0;n/

is spanned by the set of WDVV relations, where we identify CH0.M
�1

0;n/ as the Q-vector space
with basis given by boundary divisors of M0;n.

Proof. First, we prove this proposition when n D 4. Identify

M0;4 Š P1 and M0;4 Š A1 � ¹0; 1º:

Then CH�.M0;4; �/ is a CH�.k; �/-algebra generated by two elements f0 and f1 correspond-
ing to two points in A1 (see [8]). Fix a (non-canonical) isomorphism�1 Š A1 and set the two
faces as 0 and 1. Consider a line L0 through the points .0; 0/ and .1; 1/ in P1 ��1 restricted
to .P1 � ¹0; 1;1º/ ��1 as illustrated in Figure 2. Then f0 D ŒL0� and

𝜕.L0/ D Œ0� � Œ1� 2 CH0.M0;4 nM0;4/:

This is one of the WDVV relations on M0;4 after identifying Œ0�; Œ1� and Œ1� with three bound-
ary strata in (1.4). The second one is obtained from the generator f1 in an analogous way,
finishing the proof for n D 4.

.P1 � ¹0; 1;1º/ ��1

L0

�1

0 1

Figure 2. The line L0 in .P1 � ¹0; 1;1º/ ��1

For the case of general n � 4, the space M0;n is a hyperplane complement with hyper-
planes associated to pairs of points that collide and there is a correspondence between genera-
tors of CH1.M0;n; 1/ and hyperplanes. On the one hand, the action of the symmetric group Sn
on M0;n is transitive on the hyperplanes (and thus on the generators). On the other hand, we can
obtain one of the hyperplanes as the pullback of a boundary point in M0:4 under the forgetful
morphism � WM0;n !M0;4 and thus, via the action of Sn, any hyperplane can be obtained
under a suitable forgetful morphism to M0;4 (varying the subset of four points to remember).

Note that the morphism � is flat and that we have an open embedding

i WM0;n ! ��1.M0;4/



90 Bae and Schmitt, Chow rings of stacks of prestable curves II

and a closed embedding j 0 W ��1.𝜕M0;4/! 𝜕M0;n. Combining the compatibility of the con-
necting homomorphism 𝜕 with flat pullback and Lemma 2.35 above, we obtain a commutative
diagram

CH1.M0;n; 1/ CH0.𝜕M0;n/

CH1.��1.M0;4/; 1/ CH0.��1.𝜕M0;4//

CH1.M0;4; 1/ CH0.𝜕M0;4/.

𝜕

𝜕

i� j 0�

𝜕

�� ��

Thus, since (under a suitable permutation of the markings) every generator of CH1.M0;n; 1/

can be obtained as the image of one of the generators of CH1.M0;4; 1/, the image of

CH1.M0;n; 1/! CH0.𝜕M0;n/

is generated by WDVV relations on CH0.𝜕M0;4/ pulled back via � .

We extend the above computation to M0;n.

Corollary 2.37. For n � 4, the image of the connecting homomorphism 𝜕 of

CH`C1.M0;n; 1/
𝜕
�! CH`.M�10;n/

��
�! CH`C1.M0;n/ �! 0

is the set of WDVV relations for ` D 0 and is zero for ` > 0.

Proof. By (2.13), we have CH`C1.M0;n; 1/ D 0 when ` > 0 and hence 𝜕 is trivial in
this range.

For the statement in degree ` D 0 we in fact ignore the definition of 𝜕 and the machinery
of higher Chow groups and simply use that here the image of 𝜕 is given by the kernel of the map

(2.25) CH0.M�10;n/
��
�! CH1.M0;n/;

in other words by linear combinations of boundary divisors adding to zero in CH1.M0;n/.
Given such a relation, restricting to the open substack M0;n simply kills all unstable boundary
divisors and by Proposition 2.36 (or classical theory) the result is a combination of WDVV
relations. After subtracting those from the original relation, we obtain a combination of unstable
boundary divisors forming a relation. The proof is finished if we can show that this must be the
trivial linear combination, i.e. that the unstable boundary divisors are linearly independent.

There are exactly nC 1 strictly prestable graphs with one edge. Let �0 be the prestable
graph with a vertex of valence 1 and let �i be the semistable graph with the i -th leg on the
semistable vertex. Suppose there is a linear relation

R D a0Œ�0�C a1Œ�1�C � � � C anŒ�n� D 0; ai 2 Q;

in CH1.M0;n/, then we want to show that all ai D 0.
To see this, we can simply construct test curves �i W P1 !M0;n intersecting precisely

the divisor Œ�i � and none of the others. To obtain �i , start with the trivial family P1 � P1 ! P1

and a tuple of n disjoint constant sections p1; : : : ; pn. Let �0 be defined by the family of
prestable curves obtained by blowing up a point on P1 � P1 away from any of the sections.
For 1 � i � n we similarly obtain �i by blowing up a point on the image of pi and taking
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the strict transform of the old section pi . Then we have 0 D ��i R D ai for all i , finishing
the proof.

Remark 2.38. As a consequence of the above result, for n � 3, the map

�� W CH`.M�10;n/! CH`C1.M0;n/

is an isomorphism in degree ` � 1. Restricting to the locus of stable curves, the same proof
implies that

�� W CH`.𝜕M0;n/! CH`C1.M0;n/

is an isomorphism for ` � 1.
The surjectivity of �� comes from the excision sequence that we discussed. The injec-

tivity can be explained from the results of Kontsevich and Manin ([26]). Indeed, by Proposi-
tion [5, Proposition B.19], the vector space CH`.𝜕M0;n/ is generated by boundary strata of
M0;n with at least one edge. To show injectivity of ��, it is enough to show that any relation
among boundary strata in CH`C1.M0;n/ is a pushforward of a relation holding already in the
Chow group of 𝜕M0;n. By [26, Theorem 7.3] the set of relations between boundary strata in
CH`C1.M0;n/ is spanned by the relations obtained from gluing the WDVV relation into a ver-
tex v0 of a stable graph � with at least ` edges. When ` � 1, this relation is a pushforward of
a class Y

v¤v0

ŒM0;n.v/� �WDVV 2 CH1.M�/;

where WDVV 2 CH1.M0;n.v0// is the WDVV relation corresponding to the choice of four
half edges at v0. Under the gluing map, this class is a relation on 𝜕M0;n. Therefore we get the
injectivity of ��.

This corollary is enough to compute the connecting homomorphism in arbitrary degree.

Proposition 2.39. The image of

𝜕 W CH�.MDp0;n ; 1/! CH��1.M�pC10;n /

in (2.23) is equal to the image of the composition

R
pC1
WDVV ! S

nf;pC1
0;n ! CH�.M�pC10;n /:

Thus we can write

(2.26) CH�.M�pC10;n /=CH�C1.MDp0;n ; 1/ D CH�.M�pC10;n /=R
pC1
WDVV:

Proof. From the functoriality of higher Chow groups, it follows that we have a commu-
tative diagram

(2.27)

L
� CH�.Msm

� ; 1/
L
� CH�.M� ; 1/ CH�.MDp0;n ; 1/

L
� CH��1.M� nMsm

� / CH��1.M�pC10;n /,

L
.�sm

� /�

L
𝜕� 𝜕P

.��/�

where the sums run over prestable graphs with exactly p edges. By Remark 2.21, .�sm
� /� are

surjective. Thus the image of 𝜕 is given by the sum of the images of the maps .��/� ı 𝜕� .
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From Remark 2.18 we know that 𝜕� vanishes on the image of the map

(2.28) CH�.k; 1/˝ CH�.Msm
� /! CH�.Msm

� ; 1/;

and thus factors through its cokernel. On the other hand, it follows from Propositions 2.14
and 2.16 that the cokernel of (2.28) is generated by classes coming from the direct sumM

v2V.�/;n.v/�4

�
CH1.Msm

0;n.v/; 1/˝
O

v02V.�/; v¤v0

CH�.Msm
0;n.v0//

�
:

For an element ˛v ˝
N
v¤v0 ˛v0 in CH�.Msm

� ; 1/, choose an extension ˛v0 of each ˛v0 from
Msm
0;n.v0/

to M0;n.v0/. By Lemma 2.17 (a), the boundary map 𝜕� has the form

𝜕�
�
˛v ˝

O
v¤v0

˛v0

�
D 𝜕.˛v/˝

O
v¤v0

˛v0 :

By Corollary 2.37, the elements 𝜕.˛v/ at vertices v with n.v/ � 4 are precisely the WDVV
relations on M0;n.v/, whereas the classes ˛v0 at other vertices v0 are exactly the types of deco-
rations allowed in decorated strata classes in normal form. After pushing forward via �� this is
precisely our definition of the relations R

pC1
WDVV.

Proof of Theorem 2.33. Recall that by Lemma 2.34, the composition

S
nf;p
0;n ! CH�.M�p0;n/! CH�.MDp0;n /

is an isomorphism. Thus in the diagram

S
nf;p
0;n

CH�.MDp0;n ; 1/ CH��1.M�pC10;n / CH�.M�p0;n/ CH�.MDp0;n / 0

Š

𝜕

we obtain a canonical splitting of the excision exact sequence (2.23) and thus we have

(2.29) CH�.M�p0;n/ D S
nf;p
0;n ˚ CH��1.M�pC10;n /=CH�.MDp0;n ; 1/:

Combining (2.29) and equation (2.26) from Proposition 2.39, we see

(2.30) CH�.M�p0;n/ D S
nf;p
0;n ˚ CH��1.M�pC10;n /=R

pC1
WDVV:

Applying (2.30) for p D 0; 1; 2; : : : we obtain

CH�.M0;n/ D CH�.M�00;n/

D S
nf;0
0;n ˚ CH��1.M�10;n/=R

1
WDVV

D S
nf;0
0;n ˚ .S

nf;1
0;n =R

1
WDVV/˚ CH��2.M�20;n/=R

2
WDVV

D � � �

D

M
p�0

S
nf;p
0;n =R

p
WDVV

D Snf
0;n=RWDVV;

finishing the proof.

Finally, we end the proof of the main theorem.
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Proof of Theorem 2.31. We know that the kernel of S0;n!CH�.M0;n/ contains R�; .
We define

Rres D ker
�
S0;n=R�; ! CH�.M0;n/

�
:

Likewise, by Theorem 2.33 we know that the kernel of Snf
0;n ! CH�.M0;n/ is equal to RWDVV.

We then obtain a diagram of morphisms with exact rows

(2.31)

0 RWDVV Snf
0;n CH�.M0;n/ 0

0 Rres S0;n=R�; CH�.M0;n/ 0,

where the arrow Snf
0;n ! S0;n=R�; is surjective by Proposition 2.32. A short diagram chase

shows that RWDVV factors through Rres via the dashed arrow. By the four-lemma, the map
RWDVV ! Rres is surjective. This clearly implies the statement of the theorem.

2.5. Relation to previous works. Let us start this subsection by pointing out several
results in Gromov–Witten theory, studying intersection numbers on moduli spaces of stable
maps, which can be seen as coming from results about the tautological ring of Mg;n.

Example 2.40. In [32], degree one relations on the moduli space of stable maps to
a projective space M0;n.PN ; d / are used to reduce two pointed genus 0 potentials to one
pointed genus 0 potentials. Note that [32, Theorem 1.(2)] can be obtained by the pullback of
the relation in Lemma 2.2 along the forgetful morphism

M0;n.P
N ; d /!M0;2:

Similarly, [32, Theorem 1.(1)] can be obtained from Lemma 2.3 on M0;3. The relevant com-
putations are given explicitly in [3].

From Theorem 2.31 we see that any universal relation in the Gromov–Witten theory of
genus 0 obtained from tautological relations on M0;n must follow either from the WDVV
relation (1.4) or relation (1.8) between  and boundary classes on M0;2.

Apart from applications to Gromov–Witten theory, there are several results in the litera-
ture which compute the Chow groups of some strict open subloci of M0;n.

Example 2.41. Restricting to the locus M0;n �M0;n of stable curves, Theorem 2.31
specializes to the classical result in [22, 26] that all relations between undecorated strata of
M0;n are additively generated by the WDVV relations.

Example 2.42. In [36], Oesinghaus computes the Chow ring (with integer coefficients)
of the open substack T of M0;3 of curves with prestable graph of the form

12

3

,

where we denote by �k the graph of the shape above with k edges (for k � 0). Oesinghaus
shows that the Chow ring CH�.T / is given by the ring QSym of quasi-symmetric functions on
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the index set Z>0. QSym can be seen as the subring of QŒ˛1; ˛2; : : : � with additive basis given
by

(2.32) MJ D

X
i1<���<ik

˛
j1

i1
� � �˛

jk

ik
for k � 1; J D .j1; : : : ; jk/ 2 Zk�1:

Under the isomorphism CH�.T / Š QSym, the elementMJ is a basis element of degree
P
` j`

in the Chow group of T . As we explain in [5, Example 4.3], the cycle MJ corresponds to the
tautological class supported on the stratum M�k given by

(2.33)
.� �  0/j1�1 .� �  0/j`�1 .� �  0/jk�1

12

3

.

Using the correspondence, we can verify several of the results of our paper in this particu-
lar example. Indeed, one can use Theorem 2.33 to verify that the classes (2.33) form a basis
of CH�.T /. For this, one observes that decorated strata in normal form generically supported
on T must have underlying graph �k for some k, with trivial decoration on the valence 3 ver-
tex and decorations .� h �  h0/c` on the valence 2 vertices. Since every term appearing in
a WDVV relation has at least two vertices of valence at least 3, all these relations restrict to
zero on T and thus the above generators form a basis by Theorem 2.33. Note that the form of
these generators in normal form is not quite the same as the one shown in (2.33), but a small
combinatorial argument shows that the two bases can be converted to each other by using
relation (1.8) between  -classes and the boundary divisor on M0;2.

Note that [36] also computes the Chow group of the semistable loci Mss
0;2 and Mss

0;3. By
a straightforward generalization of the discussion above, a correspondence of the generators
in [36] to the tautological generators on these spaces, as well as a comparison of relations can
be established.

Example 2.43. In a series of papers [13–15], Fulghesu presented a computation of the
Chow ring of the open substack M�30 �M0 of rational curves with at most three nodes, as
an explicit algebra with 10 generators and 11 relations. Some of the generators are given by
�-classes, some are classes of strata and others are decorated classes supported on strata.

Establishing a precise correspondence to the generators and relations discussed in our
paper is challenging due to the complexity of the involved combinatorics. However, as a non-
trivial check of our results we can compare the dimensions dim CHd .M�30 / of the graded
pieces of the Chow ring. Given any open substack U �M0, we package the ranks of the
Chow groups of U in the generating function

HU D
X
d�0

dim CHd .U /td ;

which is the Hilbert series of the graded ring CH�.U /.
In [14], Fulghesu has computed the Chow rings of the open substacks U DM�e0 for

e D 0; 1; 2; 3 in terms of generators and relations. Using the software Macaulay2 [19] we can
compute16) the Hilbert functions HF

U of the graded algebras given by Fulghesu. We list them
in Table 3.

16) The output of the relevant computation can be found here: https://www.cocalc.com/share/
f765c8c72a7372905a4d4d2d0c8606ad2864fecd/FulghesuComputation.txt?viewer=share.

https://www.cocalc.com/share/f765c8c72a7372905a4d4d2d0c8606ad2864fecd/FulghesuComputation.txt?viewer=share
https://www.cocalc.com/share/f765c8c72a7372905a4d4d2d0c8606ad2864fecd/FulghesuComputation.txt?viewer=share
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U HF
U

M�00
1

1 � t2
D 1C t2C t4C� � �

M�10
1

.1 � t2/.1 � t /
D 1C tC2t2C2t3C3t4C� � �

M�20
t4C1

.1 � t2/2.1 � t /
D 1C tC3t2C3t3C7t4C7t5C13t6C13t7C21t8C� � �

M�30 H 0 D 1C tC3t2C5t3C10t4C15t5C26t6C36t7C55t8C� � �

Table 3. The Hilbert series of the Chow rings of open substacks U of M0, as computed by
Fulghesu; for space reasons we do not write the full formula for the rational function
H 0, only giving the expansion.

On the other hand, since for stable graphs with at most three edges no WDVV relations
can appear, Theorem 2.33 implies that the Chow group CH�.M�e0 / is equal to the subspace
of the strata algebra S0;0 spanned by decorated strata in normal form with at most e nodes
(for e � 3). By some small combinatorial arguments, this allows us to compute the Hilbert
functions HU of the spaces U DM�e0 :

Case e D 0. For U DM�00 the only generators in normal form are the classes �a2 ,
existing in every even degree d D 2a, so that the generating function is given by

H
M
�0
0

D 1C t2 C t4 C � � � D
1

1 � t2
;

recovering the formula from Table 3.

Case e D 1. On U DM�00 we get additional generators

Œ�1;  
a
h1
 bh2

� for �1 D
h1 h2

:

Since the automorphism group of �1 exchanges h1; h2, the numbers a; b above are only unique
up to ordering. We get a canonical representative by requiring a � b. Overall, we obtain the
generating series

H
M
�1
0

D H
M
�0
0

C

X
0�a�b

taCbC1

D
1

1 � t2
C t

X
a�0

X
c�0

taC.aCc/

D
1

1 � t2
C t

�X
a�0

t2a
��X

c�0

tc
�

D
1

1 � t2
C t

1

1 � t2
1

1 � t

D
1

.1 � t2/.1 � t /
;

where we used the substitution b D aC c. Again we recover the formula from Table 3.
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Case e D 2. The additional generators for U DM�20 are given by

Œ�2;  
a
h1
. bh2

C .� h3
/b/ ch4

� for �2 D
h1 h2 h3 h4

:

The automorphism group of �2 exchanges h1; h4 and h2; h3, so a; c are only well-defined up
to ordering. Moreover, for a D c and b D 2`C 1 odd, this symmetry implies

Œ�2;  
a
h1
. bh2

C .� h3
/b/ ah4

� D �Œ�2;  
a
h1
. bh2

C .� h3
/b/ ah4

�;

so the corresponding generator vanishes. Overall, the numbers of basis elements supported
on �2 have generating series

t2 �

� X
0�a�c

X
b�0

taCbCc

„ ƒ‚ …
D 1

.1�t2/.1�t/2

�

X
a�0

X
`�0

t2aC2`C1

„ ƒ‚ …
D t

.1�t2/2

�
D

t2.t2 C 1/

.1 � t /.1 � t2/2
:

Adding this to the generating series for M�10 we obtain the formula

H
M
�2
0

D H
M
�1
0

C
t2.t2 C 1/

.1 � t /.1 � t2/2
D

t4 C 1

.1 � t2/2.1 � t /
;

again obtaining the same formula as in Table 3.

Case e D 3. For the full locus U DM�30 a discrepancy between our results and
Fulghesu’s computations appears. There are two new types of generators appearing: firstly
we have

Œ� 03;  
a
h1
 bh2

 ch3
� for � 03 D

h1

h2

h3

giving a contribution of

t3
X

0�a�b�c

taCbCc D
t3

.1 � t3/.1 � t2/.1 � t /

to the generating series. The second type of generator is

Œ� 003 ;  
a
h1
. bh2

C .� h3
/b/..� h4

/c C  ch5
/ dh6

� for � 003 D
h1 h2 h3 h4 h5 h6

:

Since � 003 again has an automorphism of order 2, we count such generators using a trick: if the
vertices of � 003 were ordered, the generating series would be

t3
X

a;b;c;d�0

taCbCcCd D
t3

.1 � t /4
:

Due to the automorphism, we counted almost all the generators twice, except those fixed by the
automorphism, for which .a; b; c; d/ D .a; b; b; a/ and whose generating series is

t3
X
a;b�0

t2aC2b D
t3

.1 � t2/2
:
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Adding these two series, we count every generator twice, so we obtain the correct count after
dividing by two. Overall we get

H
M
�3
0

D H
M
�2
0

C
t3

.1 � t3/.1 � t2/.1 � t /
C
1

2

�
t3

.1 � t /4
C

t3

.1 � t2/2

�
D
t6 C t5 C 2t4 C t3 C 1

.1 � t2/2.1 � t /.1 � t3/
:

However, expanding this series we obtain

t6 C t5 C 2t4 C t3 C 1

.1 � t2/2.1 � t /.1 � t3/
D 1C t C 3t2 C 5t3 C 10t4 C 15t5

C 26t6 C 36t7 C 54t8 C � � � :

(2.34)

Comparing with the expansion of the corresponding function H 0 in Table 3 we see that the
coefficient of t8 is 55 for Fulghesu and 54 for us. We used a modified version of the software
package admcycles [10] for the open-source software SageMath [43] to verify the number 54
above.

After revisiting Fulghesu’s proof, we think we can explain this discrepancy from a rela-
tion that was missed in [14]. In the notation of this paper, we claim that there is a relation

(2.35) r � q �  003 � s C 2u � 2 � 
00
3 � q � �2 � s � 2 � �1 D 0 2 CH8.M�30 /:

Here the classes r; s; u;  003 are supported on the closed stratum M� 003 �M�30 . Relation (2.35)
follows from the description of the Chow ring CH�.M� 003 / and the formulas for restrictions
of classes q;  003 ; 2; �2; �1 to M� 003 computed in [14, Section 6.2]. On the other hand, using
Macaulay2 we verified that relation (2.35) is not contained in the ideal of relations given in
[14, Theorem 6.3]. Adding this missing relation, we obtain the correct rank 54 for CH8.M�30 /.

Our numerical experiments indicated that there are further relations missing in degrees
d > 9. So while the general proof strategy of [14] seems sound, more care needed is needed in
the final step of the computation.

2.6. Chow rings of open substacks of M0;n – Finite generation and Hilbert series.
In the previous subsection, we saw some explicit computations for Chow groups CH�.U / of
open substacks U �M0;n and their Hilbert series

HU D
X
d�0

dimQ CHd .U /td :

For U DM�e0 and e D 0; 1; 2 we have that CH�.U / is a finitely generated graded algebra by
the results of [14]. But recall that any such algebra, having generators in degrees d1; : : : ; dr
has a Hilbert series which is the expansion (at t D 0) of a rational function H.t/ of the form

H.t/ D
Q.t/Qr

iD1.1 � t
di /

for some Q.t/ 2 ZŒt �

(see [34, Theorem 13.2]). This explains the shape of the Hilbert functions of M�e0 from Table 3.
We remark here, that all functions H.t/ of the above form have poles only at roots of unity.

On the other hand, for the open substack T �M0;3 studied by Oesinghaus, we saw
CH�.T / Š QSym, where the algebra QSym had an additive basis element MJ in degree d
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for each composition J of d . Since for d � 1 the number of compositions of d is 2d�1, the
Hilbert series of the Chow ring of T is given by

HT D 1C
X
d�0

2d�1td D 1C
t

1 � 2t
D

1 � t

1 � 2t
:

From this we can see two things:

� The Chow ring CH�.T / cannot be a finitely generated algebra, since the function HT

has a pole at 1
2

, which is not a root of unity.

� On the other hand, we still have that HT is the expansion of a rational function, even
though T is not even of finite type.

The above observations lead to the following two questions.

Question 2.44. Is it true that for U �M0;n an open substack of finite type, the Chow
ring CH�.U / is a finitely generated algebra?

Question 2.45. Is it true that for U �M0;n any open substack which is a union of
strata M� , the Hilbert series HU is the expansion of a rational function at t D 0?

For the first question, we note that by Theorem 1.2 we know that CH�.U / is addi-
tively generated by possibly infinitely many decorated strata Œ�; ˛�, supported on finitely many
prestable graphs � . It is far from obvious whether we can obtain all of them multiplicatively
from a finite collection of Œ�i ; ˛i �.

For the second question, we observe that it would be implied for all finite-type open
substacks U of M0;n assuming a positive answer to the first question. Further evidence is
provided by the results from [36]: as we saw above, the open substack T �M0;3 has a rational
generating seriesHT . In fact, as mentioned above Oesinghaus computes the Chow ring for the
entire semistable locus in M0;2 and M0;3 (see [36, Corollary 2,3]) and obtains

CH�.Mss
0;2/ D QSym˝Q QŒˇ�

and
CH�.Mss

0;3/ D QSym˝Q QSym˝Q QSym:

Since we know that the Hilbert series of QSym is 1�t
1�2t

and the Hilbert series of QŒt � is 1
1�t

and that Hilbert series are multiplicative under tensor products, we easily see that

HMss
0;2
D

1

1 � 2t
; HMss

0;3
D

.1 � t /3

.1 � 2t/3
:

So Question 2.45 has a positive answer for the non-finite-type substacks of semistable points
in M0;2 and M0;3.

To finish this section, we want to record some numerical data about the Chow groups of
the full stacks M0;n. Using Theorems 1.2 and 2.31, these groups have a completely combina-
torial description. This has been implemented in a modified version of the software package
admcycles [10], which can enumerate prestable graphs, decorated strata in normal form and
the relations R�; ;RWDVV between them. Thus, from linear algebra we can compute the ranks
of Chow groups of M0;n in many cases. We record the results in Table 4.
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d n D 0 n D 1 n D 2 n D 3 n D 4 n D 5 n D 6 n D 7 n D 8

0 1 1 1 1 1 1 1 1 1

1 1 2 3 4 6 11 23 50 108

2 3 5 9 16 33 80 215 621 1900

3 5 12 27 62 162 481 1572

4 13 32 84 235 739 2594

5 27 84 263 875 3219

6 70 234 837 3219

7 166 656 2683

8 438 1892

9 1135

10 3081

Table 4. The rank of the Chow groups CHd .M0;n/.

3. Comparison with the tautological ring of the moduli of stable curves

3.1. Injectivity of pullback by forgetful charts. Assume we are in the stable range
2g � 2C n > 0 so that the moduli space Mg;n is nonempty. Since Mg;n �Mg;n is an open
substack, the Chow groups of Mg;n determine those of Mg;n: we have that CH�.Mg;n/ is the
quotient of CH�.Mg;n/ by the span of classes supported on the strictly unstable locus.

Restricting to the subrings of tautological classes, we note that the tautological ring
R�.Mg;n/ of Mg;n is the subring of CH�.Mg;n/ given by the restriction of R�.Mg;n/ inside
CH�.Mg;n/ under the open embedding

i WMg;n ,!Mg;n:

Thus the tautological ring R�.Mg;n/ determines R�.Mg;n/ since the composition

R�.Mg;n/
st�
��! R�.Mg;n/

i�

��! R�.Mg;n/

is the identity and thus R�.Mg;n/
st�
��! R�.Mg;n/ is injective.

It is an interesting question whether the converse is true: do the Chow (or tautological)
rings of the moduli spaces of stable curves determine the Chow (or tautological) ring of Mg;n?
The following conjecture gives a precise way in which this could be true.

Conjecture 3.1. Let .g; n/ ¤ .1; 0/. Then for a fixed d � 0 there exists m0 � 0 such
that for any m � m0, the forgetful morphism

Fm WMg;nCm !Mg;n

satisfies that the pullback

F �m W CHd .Mg;n/! CHd .Mg;nCm/

is injective.
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We have seen in [5, Lemma 2.1] that (for m sufficiently large) the image of Fm is open
with complement of codimension bm

2
c C 1. So for m � 2d , we have

CHd .Fm.Mg;nCm// Š CHd .Mg;n/;

so certainly the image of Fm is sufficiently large to capture the Chow group of codimen-
sion d cycles. Still, it is not true that a surjective, smooth morphism has injective pullback
in Chow (if the fibres are not proper, as is the case for Fm), so this does not suffice to prove the
conjecture.

One aspect of the conjecture we can prove so far is the statement that if F �m0
is injective,

it is true that for any m � m0 the map F �m remains injective.

Proposition 3.2. For .g; n/ ¤ .1; 0/ and 0 � m � m0 with 2g� 2C nCm>0we have
kerF �m0 � kerF �m. In other words, the subspaces .kerF �

`
/` form a non-increasing sequence

of subspaces of CHd .Mg;n/.

Proof. It suffices to show the statement for m0 D mC 1. Consider the following non-
commutative diagram:

(3.1)

Mg;nCmC1

Mg;nCm Mg;n.

�
FmC1

Fm

Here � is the usual map forgetting the marking pnCmC1 and stabilizing the curve. For this
reason, the diagram is only commutative on the complement of the locus

Z D ¹.C; p1; : : : ; pnCmC1/ W pnCmC1 contained in rational component of C

with three special pointsº �Mg;nCmC1:

Let i W Z !Mg;nCmC1 be the inclusion of Z and let ˛ 2 CH�.Mg;n/ be any class. By the
commutativity of the diagram (3.1) away from Z, we know that the class F �mC1˛ � �

�F �m˛

restricts to zero on the complement of Z and thus, by the usual excision sequence, there exists
a class ˇ 2 CH�.Z/ such that

F �mC1˛ � �
�F �m˛ D i�ˇ:

We want to transport this to an equality of classes on Mg;nCm by intersecting with  nCmC1
and pushing forward via � . But notice that  nCmC1jZ D 0 since on Z the component of C
containing pnCmC1 is parametrized by M0;3 and thus the psi-class of pnCmC1 vanishes here.
Thus

 nCmC1 � F
�
mC1˛ �  nCmC1 � �

�F �m˛ D .i�ˇ/ nCmC1

D i�.i
� nCmC1 � ˇ/ D 0:

(3.2)

Pushing forward by � and using �� nCmC1 D .2g � 2C nCm/ � ŒMg;nCm�, we obtain

��. nCmC1 � F
�
mC1˛/ D .2g � 2C nCm/ � F

�
m˛:

Thus, since 2g � 2C nCm � 2g � 2C n > 0, any class ˛ with F �mC1˛ D 0 also satisfies
F �m˛ D 0, finishing the proof.
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.n; d/ CHd .M0;n/ F �m.CHd .M0;n//

m D 0 1 2 3 4 5 6 7 8 9

.0; 0/ 1 1 1 1 1 1 1 1

.0; 1/ 1 1 1 1 1 1 1

.0; 2/ 3 1 2 3 3 3

.0; 3/ 5 1 2 4 5

.0; 4/ 13 1 2 7

.1; 0/ 1 1 1 1 1 1 1 1 1

.1; 1/ 2 1 2 2 2 2 2 2

.1; 2/ 5 1 3 5 5 5 5

.1; 3/ 12 1 4 7 12 12

.2; 0/ 1 1 1 1 1 1 1 1

.2; 1/ 3 1 3 3 3 3 3

.2; 2/ 9 1 5 9 9 9

.2; 3/ 27 1 7 11 27

.3; 0/ 1 1 1 1 1 1 1 1

.3; 1/ 4 1 4 4 4 4 4

.3; 2/ 16 1 5 15 16 16

.3; 3/ 62 1 5 16 62

Table 5. The ranks of the Chow groups CHd .M0;n/ compared to (lower bounds on) the ranks
of F �m.CHd .M0;n//; in many cases it was not feasible to obtain the precise rank of
F �m.CHd .M0;n//, but a lower bound could be achieved by computing the rank of the inter-
section pairing of F �m.CHd .M0;n// with a selection of tautological classes on M0;nCm.

Again, for g D 0 we can give some numerical evidence for the above conjecture. In
Table 5 we compare ranks of the Chow groups CHd .M0;n/ to (lower bounds on) the ranks
of F �m.CHd .M0;n//. We see that the bounds for F �m.CHd .M0;n// increase monotonically in
m (as predicted by Proposition 3.2) and, in all cases which we could handle computationally,
stabilize at the rank of CHd .M0;n/, implying that the corresponding pullbacks F �m are indeed
injective.

3.2. The divisor group of Mg;n. As for the moduli space of stable curves, the group of
divisor classes on Mg;n can be fully understood in terms of tautological classes and relations.
For g D 0 we already saw that all divisor classes are tautological and we explicitly described
the relations, so below we can restrict to g � 1. As before, we also want to exclude the case
g D 1; n D 0 since M1;0 does not have a stratification by quotient stacks.

Thus we can restrict to the range 2g � 2C n > 0, where the space Mg;n is nonempty.
Then we have an exact sequence

(3.3) CH�.Mg;n; 1/ CH�.Mus
g;n/ CH�.Mg;n/ CH�.Mg;n/ 0,

st�
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where Mus
g;n is the unstable locus of Mg;n, i.e. it is the complement of the open substack

Mg;n �Mg;n. Using this sequence, we can completely understand CH1.Mg;n/ from the
explicit description of CH1.Mg;n/ in [1, Theorem 2.2].

Proposition 3.3. For .g; n/ ¤ .1; 0/ we have R1.Mg;n/ D CH1.Mg;n/. Furthermore,
for 2g � 2C n > 0, all tautological relations in R1.Mg;n/ are pulled backed from relations in
R1.Mg;n/ via the stabilization morphism.

Proof. As discussed before, for the statement that all divisor classes are tautological we
can restrict to the stable range 2g � 2C n > 0, since the case of g D 0 was treated before.
For the moduli spaces of stable curves it holds that R1.Mg;n/ and CH1.Mg;n/ coincide by
[1]. Since the locus Mus

g;n is a union of boundary divisors, whose fundamental classes are
pushforwards of appropriate gluing maps, the image of the pushforward map

CH0.Mus
g;n/! CH1.Mg;n/

is contained in R1.Mg;n/. Therefore the excision sequence (3.3) gives the conclusion.
To compute the set of relations, we observe that

(3.4) CH1.Mg;n; 1/ Š H
0.Mg;n;O

�

Mg;n
/ D k�

because Mg;n is smooth and projective over k. For smooth projective varieties X , the iso-
morphism CH1.X; 1/ Š k� is proven in [6, Theorem 6.1]. For connected smooth projective
Deligne–Mumford stacks X over k which are quotient stacks, the corresponding isomorphism
also holds after tensoring with Q. Indeed, let q W X ! Spec k be the structure morphism.
By [29, Theorem 1] there exists a finite flat surjective morphism p W X ! X from a smooth
projective scheme over k. Then we have

k� ˝Z Q Š CH1.k; 1/Q
q�

�! CH1.X; 1/Q
p�

��! CH1.X; 1/ Š k� ˝Z Q;

where the composition is an isomorphism. This shows that p� is surjective, and on the other
hand, by the projection formula (see e.g. [24, Section 2.3.4]) the pullback p� is injective. Thus
CH1.X; 1/Q Š k� ˝Z Q. Applying this to X DMg;n we obtain (3.4), where we use that
Mg;n is a quotient stack (see [2, Chapter XII, Theorem 5.6]). Therefore, in the degree 1 part
of the sequence (3.3), the image of the connecting homomorphism is trivial. Thus, since the
pullback st� by the stabilization morphism defines a splitting of (3.3) on the right, we have

CH1.Mg;n/ D
M

� unstable
jE.�/jD1

Q � Œ��˚ CH1.Mg;n/:

It follows that all relations between decorated strata classes in codimension 1 are pulled back
from Mg;n.

3.3. Zero cycles on Mg;n. After treating the case of codimension 1 cycles in the pre-
vious section, we want to make some remarks about cycles of dimension 0. For the moduli
spaces of stable curves, these exhibit many interesting properties:

� In [18], Graber and Vakil showed that the group R0.Mg;n/ of tautological zero cycles on
Mg;n is always isomorphic to Q, even though the full Chow group CH0.Mg;n/ can be
infinite-dimensional (e.g. for .g; n/ D .1; 11/, see [18, Remark 1.1]).
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� In [39], Pandharipande and the second author presented geometric conditions on sta-
ble curves .C; p1; : : : ; pn/ ensuring that the zero cycle Œ.C; p1; : : : ; pn/� in Mg;n is
tautological.

We want to note here, that for the moduli stacks of prestable curves, the behavior of tautological
zero cycles becomes more complicated:

� For M0;n with n D 0; 1; 2, we have R0.M0;n/ D CH0.M0;n/ D 0 for dimension rea-
sons.

� As visible from Table 4, the group R0.M0;n/ is no longer one-dimensional for n � 4.
Indeed, looking at the example of n D 4 we note that the boundary divisor of curves
with one component having no marked points is a nonvanishing zero cycle (since it pulls
back to an effective boundary divisor under the forgetful map F2 WM0;6 !M0;4), but
it restricts to zero on M0;4 �M0;4 and is thus linearly independent of the generator
of R0.M0;4/.

This indicates that for the moduli stacks of prestable curves, the group of zero cycles plays less
of a special role than for the moduli spaces of stable curves.

A. Gysin pullback for higher Chow groups

In [9], Déglise, Jin and Khan generalized Gysin pullback along a regular imbedding to
motivic homotopy theories. We summarize the construction in the language of higher Chow
groups. For a moment, letX be a quasi-projective scheme over k and we consider higher Chow
groups with Z-coefficients. For simplicity, we write GmX D X �Gm. Let Œt � be a generator
of

CH0.Gm; 1/ Š .kŒt; t
�1�/�

and let
t W CH�.X;m/! CH�.GmX;mC 1/; ˛ 7! ˛ � Œt �

be the morphism defined by the exterior product. Let i W Z ! X be a regular imbedding of
codimension r and q W NZX ! Z the normal bundle. Let DZX be the Fulton–MacPherson’s
deformation space defined by

DZX D BlZ�0.X �A1/ � BlZ�0.X � 0/

which fits into the cartesian diagram

NZX DZX GmX

¹0º A1 Gm.

By [6, 7] we have the localization sequence

(A.1) � � � ! CHd .GmX;mC 1/
𝜕
�! CHd .NZX;m/! CHd .DZX;m/! � � � :

Definition A.1. For a regular imbedding i W Z ! X , we define

i� W CHd .X;m/! CHd�r.Z;m/
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as a composition of following morphisms:

(A.2) CHd .X;m/
t
�! CHd .GmX;mC 1/

𝜕
�! CHd .NZX;m/

.q�/�1

�����!
Š

CHd�r.Z;m/;

where 𝜕 is the boundary map in (A.1) and the flat pullback q� is an isomorphism by [6].

This definition extends the Gysin pullback for Chow groups in the sense that it coincides
with the Gysin pullback defined in [16] when m D 0. This construction extends to all lci
morphism and satisfies functoriality, transverse base change and excess intersection formula,
see [9].

Given a line bundle q W L! X with the zero section 0 W X ! L, the action of the first
Chern class on higher Chow groups can be defined by

c1.L/\ W CHd .X;m/
0�
�����! CHd .L;m/

.q�/�1

�����!
Š

CHd�1.X;m/:

We want to note two basic compatibilities of this operation: firstly, given a proper morphism
f W X 0 ! X and the line bundle L! X , a short computation shows the projection formula

(A.3) f�.c1.f
�L/ \ ˛/ D c1.L/ \ f�˛ for ˛ 2 CH�.X 0; m/:

Secondly, intersecting higher Chow cycles with a Cartier divisor has the same formula as for
ordinary Chow groups.

Lemma A.2. Let i W D ! X be an effective divisor and let q W O.D/! X be the
associated line bundle. Then

(A.4) i�i
�˛ D c1.O.D// \ ˛; ˛ 2 CHd .X;m/:

Proof. Consider the following cartesian diagram:

D X

X O.D/,

i

i s

0

where s W X ! O.D/ be the regular section defining D and 0 is the zero section. Recall that
the action of the first Chern class can be defined by

c1.O.D// \ � W CHd .X;m/
0�
�����! CHd .O.D/;m/

.q�/�1

�����!
Š

CHd�1.X;m/:

By the transverse base change formula [9, Proposition 2.4.2],

i�i
�˛ D s�0�˛:

Now we can conclude the result because s� is an inverse of q�.

The above construction can be extended to global quotient stacks without any difficulty.
LetX be an equidimensional quasi-projective scheme with a linearizedG-action. Applying the
Borel construction developed in [11] yields the definition of higher Chow groups for ŒX=G�,
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see [30]. For an arbitrary algebraic stack, the authors do not know whether a direct general-
ization of [16] is possible. Relying on the recent development of motivic homotopy theories,
Khan used the six-operator formalism ([23]) to construct motivic Borel–Moore homology for
derived algebraic stacks in [24].
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